留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识

马中良 申宝剑 潘安阳 腾格尔 宁传祥 郑伦举

马中良, 申宝剑, 潘安阳, 腾格尔, 宁传祥, 郑伦举. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识[J]. 石油实验地质, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
引用本文: 马中良, 申宝剑, 潘安阳, 腾格尔, 宁传祥, 郑伦举. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识[J]. 石油实验地质, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
MA Zhongliang, SHEN Baojian, PAN Anyang, BORJIGIN Tenger, NING Chuanxiang, ZHENG Lunju. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
Citation: MA Zhongliang, SHEN Baojian, PAN Anyang, BORJIGIN Tenger, NING Chuanxiang, ZHENG Lunju. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428

四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制——来自热模拟实验的认识

doi: 10.11781/sysydz202003428
基金项目: 

国家科技重大专项 2017ZX05036-002-004

国家科技重大专项 2017ZX05005-001-003

国家自然科学基金 U1663202

国家自然科学基金 41690133

详细信息
    作者简介:

    马中良(1984-), 男, 高级工程师, 从事油气地球化学和非常规油气地质研究。E-mail: mazl.syky@sinopec.com

  • 中图分类号: TE135

Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments

  • 摘要: 四川盆地上奥陶统五峰组-下志留统龙马溪组是国内目前唯一实现页岩气商业性开发的层系,但目前对页岩气成因仍有一定分歧,主要原因是缺乏直接的实验证据。通过对国内外上奥陶统-下志留统低、中成熟度页岩和笔石开展黄金管生烃热模拟实验研究发现:(1)五峰组-龙马溪组页岩气主体以浮游藻类等富氢、富脂质有机质生成的油进一步滞留裂解为主,笔石生油能力较差,高-过成熟演化阶段有一定的生气能力,最高可达浮游藻类等富氢、富脂质有机质生气能力的20%左右;(2)五峰组-龙马溪组页岩下部层位由于富集浮游藻类、疑源类等富氢、富脂质有机质等生烃能力更强的有机质,从生气量上就优于上部以笔石为主的层位,这是下部为商业性页岩气层的一个重要原因;(3)单纯的热演化分馏、原油裂解气和干酪根裂解气的混合未造成烃气碳同位素倒转,地层抬升作用、地层水、矿物、金属等对页岩气中烃类的后期改造可能是造成页岩气同位素倒转的重要原因,碳同位素倒转可能更多体现了页岩气后期保存过程的影响。

     

  • 图  1  样品热模拟实验油产率

    Figure  1.  Oil yield of pyrolysis experiments

    图  2  样品热模拟实验烃气产率

    Figure  2.  Hydrocarbon gas yield of pyrolysis experiments

    图  3  四川盆地下志留统龙马溪组页岩TOC值和有机显微组分比例纵向分布

    据参考文献[5]修改。

    Figure  3.  TOC and organic macerals distribution of Lower Silurian Longmaxi shale, Sichuan Basin

    图  4  热模拟实验烃气与四川盆地五峰组—龙马溪组页岩气碳同位素对比

    Figure  4.  Comparison of carbon isotopes between hydrocarbon gas of pyrolysis experiments and shale gas of Wufeng-Longmaxi formations in Sichuan Basin

    表  1  样品基础地球化学参数

    Table  1.   Geochemical parameters of samples

    样品编号 样品性质 地质年代 w(TOC)/% S1+S2/(mg·g-1) Tmax/℃ IH/(mg·g-1) Rb/%
    MB-3 笔石 S1l 71.34 75.54 456 86 1.10
    O-1 笔石 O3 71.47 134.64 437 165 0.84
    G-3 黑色页岩 S1 7.14 36.92 437 467 0.56
    下载: 导出CSV
  • [1] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm

    NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm
    [2] 郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, BORJIGEN T, et al. Hydrocarbon gene-ration and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [3] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [4] GAI Haifeng, XIAO Xianming, CHENG Peng, et al. Gas generation of shale organic matter with different contents of residual oil based on a pyrolysis experiment[J]. Organic Geochemistry, 2015, 78: 69-78. doi: 10.1016/j.orggeochem.2014.11.001
    [5] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    BORJIGIN T, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm
    [6] 邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组-龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm

    QIU Zhen, ZOU Caineng, LI Xizhe, et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: a case study of the Wufeng-Longmaxi formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm
    [7] 宋笛, 胥畅, 姚素平, 等. 笔石碎屑对页岩气生成和储集特性的影响[J]. 石油实验地质, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540

    SONG Di, XU Chang, YAO Suping, et al. Influence of graptolite debris on shale gas generation and accumulation[J]. Petroleum Geology & Experiment, 2019, 41(4): 540-547. doi: 10.11781/sysydz201904540
    [8] 王勤, 钱门辉, 蒋启贵, 等. 中国南方海相烃源岩中笔石生烃能力研究[J]. 岩矿测试, 2017, 36(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201703008.htm

    WANG Qin, QIAN Menhui, JIANG Qigui, et al. A study on hydrocarbon generation capacity of graptolite in marine hydrocarbon source rocks in Southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 258-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201703008.htm
    [9] 王亮, 宁波. 四川盆地海相页岩气碳同位素倒转成因[J]. 西安文理学院学报(自然科学版), 2020, 23(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY202001019.htm

    WANG Liang, NING Bo. Cause of carbon isotope inversion of marine shale gas in Sichuan Basin[J]. Journal of Xi'an University(Natural Science Edition), 2020, 23(1): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJY202001019.htm
    [10] 魏祥峰, 郭彤楼, 刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htm

    WEI Xiangfeng, GUO Tonglou, LIU Ruobing. Geochemical features of shale gas and their genesis in Jiaoshiba block of Fuling Shale Gasfield, Chongqing[J]. Natural Gas Geoscience, 2016, 27(3): 539-548. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603022.htm
    [11] DAI Jinxing, ZOU Caineng, DONG Dazhong, et al. Geochemical characteristics of marine and terrestrial shale gas in China[J]. Marine and Petroleum Geology, 2016, 76: 443-463.
    [12] HAO Fang, ZOU Huayao. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales[J]. Marine and Petroleum Geology, 2013, 44: 1-12.
    [13] XIA Xinyu, CHEN J, BRAUN R, et al. Isotopic reversals with respect to maturity trends due to mixing of primary and secondary products in source rocks[J]. Chemical Geology, 2013, 339: 205-212.
    [14] 王宁, 李荣西, 王香增, 等. 海陆过渡相页岩气形成热模拟实验研究[J]. 天然气地球科学, 2016, 27(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601023.htm

    WANG Ning, LI Rongxi, WANG Xiangzeng, et al. Pyrolytic study on the gas-generating process of transitional shale[J]. Natural Gas Geoscience, 2016, 27(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601023.htm
    [15] 宋董军, 吴陈君, 陈科, 等. 海陆相泥页岩气体生成的半封闭模拟实验[J]. 地球科学, 2019, 44(11): 3639-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911005.htm

    SONG Dongjun, WU Chenjun, CHEN Ke, et al. Gas generation from marine and terrestrial shales by semi-closed pyrolysis experiments[J]. Earth Science, 2019, 44(11): 3639-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911005.htm
    [16] 高栋臣, 郭超, 姜呈馥, 等. 鄂尔多斯盆地山西组低成熟度页岩生烃热模拟[J]. 石油实验地质, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454

    GAO Dongchen, GUO Chao, JIANG Chengfu, et al. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 454-460. doi: 10.11781/sysydz201803454
    [17] 李剑, 马卫, 王义凤, 等. 腐泥型烃源岩生排烃模拟实验与全过程生烃演化模式[J]. 石油勘探与开发, 2018, 45(3): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803011.htm

    LI Jian, MA Wei, WANG Yifeng, et al. Modeling of the whole hydrocarbon-generating process of sapropelic source rock[J]. Petroleum Exploration and Development, 2018, 45(3): 445-454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803011.htm
    [18] 张贺, 李雅君, 徐康宁, 等. 珠江口盆地恩平组烃源岩热压模拟实验及生烃条件[J]. 大庆石油地质与开发, 2018, 37(5): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201805006.htm

    ZHANG He, LI Yajun, XU Kangning, et al. Thermocompression simulation experiment and hydrocarbon generating condition of Enping-formation source rock in pearl river mouth basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(5): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201805006.htm
    [19] MORGA R, PAWLYTA M. Microstructure of graptolite periderm in Silurian gas shales of northern Poland[J]. International Journal of Coal Geology, 2018, 189: 1-7.
    [20] 郑伦举, 秦建中, 张渠, 等. 中国海相不同类型原油与沥青生气潜力研究[J]. 地质学报, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm

    ZHENG Lunju, QIN Jianzhong, ZHANG Qu, et al. Gas-generation potentiality of various marine crude oil and bitumen in China[J]. ActaGeologica Sinica, 2008, 82(3): 360-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803010.htm
    [21] 申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480

    SHEN Baojian, YANG Yunfeng, TENGER, et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
    [22] 李东晖, 刘光祥, 聂海宽, 等. 焦石坝背斜上部气层开发特征及影响因素[J]. 地球科学, 2019, 44(11): 3653-3661. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911006.htm

    LI Donghui, LIU Guangxiang, NIE Haikuan, et al. Development characteristics and influencing factors of upper gas reservoir in Jiaoshiba anticline[J]. Earth Science, 2019, 44(11): 3653-3661. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911006.htm
    [23] BURRUSS R C, LAUGHREY C D. Carbon and hydrogen isotopic reversals in deep basin gas: evidence for limits to the stability of hydrocarbons[J]. Organic Geochemistry, 2010, 41(12): 1285-1296.
    [24] 杨平, 印峰, 余谦, 等. 四川盆地东南缘有机质演化异常与古地温场特征[J]. 天然气地球科学, 2015, 26(7): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507011.htm

    YANG Ping, YIN Feng, YU Qian, et al. Evolution anomaly of organic matter and characteristics of palaeogeothermal field in the southeast edge of Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507011.htm
    [25] 席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473

    XI Binbin, TENGER, YU Lingjie, et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473
    [26] 李文, 何生, 张柏桥, 等. 焦石坝背斜西缘龙马溪组页岩复合脉体中流体包裹体的古温度及古压力特征[J]. 石油学报, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm

    LI Wen, HE Sheng, ZHANG Baiqiao, et al. Characteristics of paleo-temperature and paleo-pressure of fluid inclusions in shale composite veins of Longmaxi Formation at the western margin of Jiaoshiba anticline[J]. Acta Petrolei Sinica, 2018, 39(4): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201804004.htm
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  479
  • HTML全文浏览量:  72
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-24
  • 修回日期:  2020-04-17
  • 刊出日期:  2020-05-28

目录

    /

    返回文章
    返回