留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低熟页岩电加热原位改质油气资源潜力数值模拟——以松辽盆地南部中央坳陷区嫩江组一、二段为例

柳波 刘阳 刘岩 贺君玲 高逸飞 王浩力 范晶 付晓飞

柳波, 刘阳, 刘岩, 贺君玲, 高逸飞, 王浩力, 范晶, 付晓飞. 低熟页岩电加热原位改质油气资源潜力数值模拟——以松辽盆地南部中央坳陷区嫩江组一、二段为例[J]. 石油实验地质, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533
引用本文: 柳波, 刘阳, 刘岩, 贺君玲, 高逸飞, 王浩力, 范晶, 付晓飞. 低熟页岩电加热原位改质油气资源潜力数值模拟——以松辽盆地南部中央坳陷区嫩江组一、二段为例[J]. 石油实验地质, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533
LIU Bo, LIU Yang, LIU Yan, HE Junling, GAO Yifei, WANG Haoli, FAN Jing, FU Xiaofei. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533
Citation: LIU Bo, LIU Yang, LIU Yan, HE Junling, GAO Yifei, WANG Haoli, FAN Jing, FU Xiaofei. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533

低熟页岩电加热原位改质油气资源潜力数值模拟——以松辽盆地南部中央坳陷区嫩江组一、二段为例

doi: 10.11781/sysydz202004533
基金项目: 

国家自然科学基金“陆相页岩油储层孔隙结构非均质性成因及其对烃类赋存相态的影响” 41972156

详细信息
    作者简介:

    柳波(1983-), 男, 博士, 教授, 从事页岩油富集机理研究。E-mail: liubo6869@163.com

  • 中图分类号: TE135

Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China

  • 摘要: 松辽盆地中央坳陷上白垩统嫩江组是一套分布面积广、厚度大、富含有机质的低熟页岩层系。根据测井资料和岩心实测数据,研究页岩有机质丰度和类型的空间非均质性,据此建立地质模型,并基于生烃动力学和热传导模型,对研究区电加热原位改质资源潜力进行预测。嫩江组各段总体上处于未成熟—低成熟阶段,是以生油为主的烃源岩。嫩江组一、二段古水体为淡水—微咸水,生烃母质主要为藻类体,有机质类型以Ⅱ1—Ⅱ2型干酪根为主,其中嫩一段烃源岩综合品质最好,优质烃源岩主要分布在长岭凹陷新北—大安地区。通过原位电加热模拟可以推断,2 kW加热功率下,页岩温度上升迅速,在加热4年后温度可达到600℃以上;1 kW加热功率下,则需要约8年。有机质转化率在加热到第五年时已经接近100%,达到原位改质最大资源丰度;加热至第五年末,在2 kW功率下,嫩一段页岩可产生的页岩油资源量为245.02×108 t,嫩二段为65.89×108 t。

     

  • 图  1  松辽盆地中央坳陷构造分区(a)及盆地中浅层沉积层序(b)

    Figure  1.  Structural units of Central Depression in Songliao Basin(a) and comprehensive strata log diagram(b)

    图  2  松辽盆地中央坳陷嫩一、二段有机质类型划分

    Figure  2.  Organic matter types of first and second members of Nenjiang Formation in Central Depression, Songliao Basin

    图  3  松辽盆地中央坳陷嫩一、二段生烃潜力和生烃倾向综合评价

    Figure  3.  Comprehensive evaluation of generated potential and proneness of first and second members of Nenjiang Formation in Central Depression, Songliao Basin

    图  4  实际示例井声波时差和电阻率趋势基线示意及总有机碳含量计算成果

    Figure  4.  Baselines of logs and calculated TOC values

    图  5  松辽盆地中央坳陷嫩一段不同总有机碳含量页岩等厚图

    Figure  5.  Shale isopach map with certain TOC intervals of first member of Nenjiang Formation in Central Depression, Songliao Basin

    图  6  加热单元加热点设置示意(a)及结构化网格划分模式(b)

    Figure  6.  Heating spot setting (a) and structural network division (b) of heating unit

    图  7  1 kW加热功率条件下加热不同年限后加热单元的温度场分布

    Figure  7.  Temperature field distribution of heating unit under 1 kW heating power condition after heating for different years

    图  8  2 kW加热功率条件下加热不同年限后加热单元的温度场分布

    Figure  8.  Temperature field distribution of heating unit under 2 kW heating power condition after heating for different years

    图  9  不同加热功率条件下加热时间与加热温度的关系

    Figure  9.  Relationship between heating time and temperature under different heating power

    图  10  松辽盆地中央坳陷目的层小单元划分

    Figure  10.  Subunit division in Central Depression, Songliao Basin

    图  11  松辽盆地中央坳陷嫩一段在不同加热功率条件下随加热时间变化原位改质油气资源丰度

    Figure  11.  In situ conversion resource abundance of first member of Nenjiang Formation in Central Depression of Songliao Basin varying with heating time under different heating power conditions

    图  12  松辽盆地中央坳陷嫩二段在不同加热功率条件下随加热时间变化原位改质油气资源丰度

    Figure  12.  In situ conversion resource abundance of second member of Nenjiang Formation in Central Depression of Songliao Basin varying with heating time under different heating power conditions

    图  13  松辽盆地中央坳陷原位改质生油气量随加热时间变化趋势

    Figure  13.  Trend of in situ conversion resources with heating time in Central Depression, Songliao Basin

    表  1  温度场模拟相关参数[10]

    Table  1.   Parameters related to temperature field simulation

    温度/ ℃ 密度/ (kg·m-3) k/(W·m-1·K-1) 质量比热/ (J·kg-1·℃-1)
    kxx kyy kzz
    25 1 930 0.742 0.742 0.628 901
    150 1 590 1.186 1.186 0.973 1 244
    250 1 570 1.134 1.134 0.473 1 025
    350 1 530 0.608 0.608 0.489 1 065
    450 1 340 0.554 0.554 0.404 1 061
    520 880 0.295 0.295 0.176 764
    550 870 0.296 0.296 0.187 802
    600 850 0.273 0.273 0.185 757
    700 840 0.262 0.262 0.175 775
    750 820 0.225 0.225 0.164 701
    注:KxxKyyKzz分别表示x轴、y轴和z轴方向的热传导系数。
    下载: 导出CSV

    表  2  不同温度与不同有机质类型转化率关系

    Table  2.   Conversion rates of various organic matter types under different temperatures

    温度/℃ 1 kW加热功率下转化率/% 温度/℃ 2 kW加热功率下转化率/%
    1 2 1 2
    325 0 0 0 340 0.07 0.04 0.02
    350 0.24 0.16 0.07 420 8.10 6.76 4.05
    390 3.01 2.33 1.19 540 96.42 96.07 95.68
    460 45.63 42.58 34.40 620 100 99.79 100
    480 70.14 67.83 61.16 650 100 100 100
    500 87.91 86.73 83.59 750 100 100 100
    540 99.15 98.84 98.91 800 100 100 100
    600 99.75 99.50 100 850 100 100 100
    下载: 导出CSV
  • [1] 余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm

    YU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm
    [2] 高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133

    GAO Hui, HE Mengqing, ZHAO Pengyun, et al. Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology & Experiment, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133
    [3] 包友书. 渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索[J]. 石油实验地质, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479

    BAO Youshu. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin[J]. Petroleum Geo-logy & Experiment, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479
    [4] 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849

    JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849
    [5] 邹才能, 丁云宏, 卢拥军, 等. "人工油气藏"理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm

    ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, techno-logy and practice of "man-made reservoirs" development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm
    [6] 邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm

    ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
    [7] 马建雄, 薛林福, 赵金岷, 等. 油页岩原位裂解开采温度场数值模拟与设计方案优化[J]. 科学技术与工程, 2019, 19(5): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905014.htm

    MA Jianxiong, XUE Linfu, ZHAO Jinmin, et al. Numerical simulation and design optimization of temperature field of oil shale in situ pyrolysis and exploitation[J]. Science Technology and Engineering, 2019, 19(5): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905014.htm
    [8] ALEKSANDROV J, PURGA J. Viru Keemia Grupp opened a new oil shale processing plant in Estonia[J]. Oil shale, 2010, 27(1): 84-88.
    [9] 刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009.

    LIU Zhaojun, YANG Hulin, DONG Qingshui, et al. Oil shale in China[M]. Beijing: Petroleum Industry Press, 2009.
    [10] 王乐. 油页岩原位电加热开采过程温度传递规律的试验研究与数值模拟[D]. 长春: 吉利大学, 2014.

    WANG Le. Experiment and simulation on temperature field during oil shale pyrolysis by electric-heating[D]. Changchun: Jilin University, 2014.
    [11] 杨雪, 柳波, 张金川, 等. 古龙凹陷青一段米兰科维奇旋回识别及其沉积响应[J]. 沉积学报, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm

    YANG Xue, LIU Bo, ZHANG Jinchuan, et al. Identification of sedimentary responses to the Milankovitch cycles in the K2qn1 Formation, Gulong Depression[J]. Acta Sedimentologica Sinica, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm
    [12] 白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩有机质特征的应用: 以松辽盆地南部青山口组富有机质页岩为例[J/OL]. 石油与天然气地质: 1-12[2019-11-14]. http://kns.cnki.net/kcms/detail/11.4820.TE.20191114.1539.002.html.

    BAI Longhui, LIU Bo, CHI Yaao, et al. Application of 2-D NMR technique to characterize organic matter in shale deposit: a case study from the Qingshankou Formation in southern Songliao Basin[J/OL]. Oil & Gas Geology: 1-12[2019-11-14]. http://kns.cnki.net/kcms/detail/11.4820.TE.20191114.1539.002.html.
    [13] 王璞珺, 杜小弟, 王俊, 等. 松辽盆地白垩纪年代地层研究及地层时代划分[J]. 地质学报, 1995, 69(4): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199504007.htm

    WANG Pujun, DU Xiaodi, WANG Jun, et al. The chronostrati-graphy and stratigraphic classification of the Cretaceous of the Songliao Basin[J]. Acta Geologica Sinica, 1995, 69(4): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199504007.htm
    [14] 边雷博, 柳广弟, 孙明亮, 等. 优化的ΔlogR技术及其在中—深层烃源岩总有机碳含量预测中的应用[J]. 油气地质与采收率, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm

    BIAN Leibo, LIU Guangdi, SUN Mingliang, et al. Improved ΔlogR technique and its application to predicting total organic carbon of source rocks with middle and deep burial depth[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm
    [15] 刘岩, 杨池银, 肖敦清, 等. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析: 以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705005.htm

    LIU Yan, YANG Chiyin, XIAO Dunqing, et al. Hydrocarbon phase limit and conversion process in the deep formation of rift lacustrine basin from Qikou Sag of Bohai Bay Basin, Eastern China[J]. Natural Gas Geoscience, 2017, 28(5): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705005.htm
    [16] 柳波, 郭小波, 黄志龙, 等. 页岩油资源潜力预测方法探讨: 以三塘湖盆地马朗凹陷芦草沟组页岩油为例[J]. 中南大学学报(自然科学版), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htm

    LIU Bo, GUO Xiaobo, HUANG Zhilong, et al. Discussion on prediction method for hydrocarbon resource potential of shale oil: taking Lucaogou Formation shale oil of Malang Sag as case[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htm
    [17] LIU Bo, WANG Haoli, FU Xiaofei, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
    [18] 祝效华, 余志详. ANSYS高级工程有限元分析范例精选[M]. 北京: 电子工业出版社, 2004.

    ZHU Xiaohua, YU Zhixiang. Examples of ANSYS advanced engineering finite element analysis[M]. Beijing: Electronic Industry Press, 2004.
    [19] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国电力出版社, 1999.

    ZHU Bofang. Thermal stresses and temperature control of mass concrete[M]. 2nd ed. Beijing: China Electric Power Press, 1999.
    [20] 盛金昌. 多孔介质流—固—热三场全耦合数学模型及数值模拟[J]. 岩石力学与工程学报, 2006, 25(S1): 3028-3033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1065.htm

    SHENG Jinchang. Fully coupled thermo-hydro-mechanical model of saturated porous media and numerical modelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3028-3033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1065.htm
    [21] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
    [22] 康志勤, 吕兆兴, 杨栋, 等. 油页岩原位注蒸汽开发的固—流—热—化学耦合数学模型研究[J]. 西安石油大学学报(自然科学版), 2008, 23(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200804009.htm

    KANG Zhiqin, LV Zhaoxing, YANG Dong, et al. The solid-fluid-thermal-chemistry coupling mathematical model for oil shale in-situ steam injecting development[J]. Journal of Xi'an Shiyou University (Nature Science Edition), 2008, 23(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200804009.htm
    [23] 王健. 油页岩原位开采温度场的数值模拟[D]. 长春: 吉林大学, 2011.

    WANG Jian. Numerical simulation of temperature field for the in-situ upgrading of oil shale[D]. Changchun: Jilin University, 2011.
    [24] 刘洋, 何坤, 李贤庆, 等. 湖相烃源岩生烃动力学及排油效率: 以松辽盆地青山口组为例[J]. 现代地质, 2016, 30(3): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201603013.htm

    LIU Yang, HE Kun, LI Xianqing, et al. Hydrocarbon generation kinetics and the efficiency of petroleum expulsion of lacustrine source rocks: taking the Qingshankou Formation in the Songliao Basin as an example[J]. Geoscience, 2016, 30(3): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201603013.htm
    [25] 程志强, 王飞宇, 师玉雷, 等. 二连盆地乌里雅斯太凹陷南洼烃源岩有机相与生烃特征[J]. 天然气地球科学, 2018, 29(5): 696-707. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805011.htm

    CHENG Zhiqiang, WANG Feiyu, SHI Yulei, et al. Organic facies and hydrocarbon characteristics of source rock in south trough of Wuliyasitai Sag, Erlian Basin[J]. Natural Gas Geoscience, 2018, 29(5): 696-707. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805011.htm
    [26] PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part Ⅰ: oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3): 291-319.
    [27] 申宝剑, 秦建中, 冯丹, 等. 烃源岩有机碳含量与生排油效率动态评价[J]. 石油实验地质, 2017, 39(4): 505-510. doi: 10.11781/sysydz201704505

    SHEN Baojian, QIN Jianzhong, FEND Dan, et al. Dynamic assessment of organic carbon content and hydrocarbon generation and expulsion efficiency in source rocks[J]. Petroleum Geology & Experiment, 2017, 39(4): 505-510. doi: 10.11781/sysydz201704505
    [28] 康洪全, 逄林安, 贾怀存, 等. 澳大利亚西北陆架北卡那封盆地资源潜力评价[J]. 石油实验地质, 2018, 40(6): 808-817. doi: 10.11781/sysydz201806808

    KANG Hongquan, PENG Lin'an, JIA Huaicun, et al. Resource assessment of North Carnarvon Basin on the northwest shelf of Australia[J]. Petroleum Geology & Experiment, 2018, 40(6): 808-817. doi: 10.11781/sysydz201806808
    [29] 柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法: 以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报(自然科学版), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm

    LIU Bo, HE Jia, LV Yanfang, et al. Parameters and method for shale oil assessment: taking Qinshankou Formation shale oil of northern Songliao Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  719
  • HTML全文浏览量:  145
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-27
  • 修回日期:  2020-06-14
  • 刊出日期:  2020-07-28

目录

    /

    返回文章
    返回