留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盆地深部地质作用与深层资源——科学问题与攻关方向

何治亮 李双建 刘全有 杨天博 张英

何治亮, 李双建, 刘全有, 杨天博, 张英. 盆地深部地质作用与深层资源——科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767
引用本文: 何治亮, 李双建, 刘全有, 杨天博, 张英. 盆地深部地质作用与深层资源——科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767
HE Zhiliang, LI Shuangjian, LIU Quanyou, YANG Tianbo, ZHANG Ying. Deep geological processes and deep resources in basins: scientific issues and research directions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767
Citation: HE Zhiliang, LI Shuangjian, LIU Quanyou, YANG Tianbo, ZHANG Ying. Deep geological processes and deep resources in basins: scientific issues and research directions[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(5): 767-779. doi: 10.11781/sysydz202005767

盆地深部地质作用与深层资源——科学问题与攻关方向

doi: 10.11781/sysydz202005767
基金项目: 

国家自然科学基金重点基金 U19B6003

国家自然科学基金重点基金 91755211

国家科技重大专项 2017ZX05005

详细信息
    作者简介:

    何治亮(1963-), 男, 教授级高级工程师, 从事沉积地质与油气盆地分析研究。E-mail: hezhiliang@sinopec.com

  • 中图分类号: TE121.1

Deep geological processes and deep resources in basins: scientific issues and research directions

  • 摘要: 向地球深部进军是我国重要的资源战略,同时也是地质学科发展的重要方向。随着油气勘探认识和技术的不断进步,全球范围内深层—超深层已成为油气勘探开发的重点领域,更是中国常规油气勘探的主战场之一。我国许多含油气盆地中都发现了与深部地质作用相关的H2、He、CO2、地热等共伴生资源的规模聚集。因而,探究深部地质作用及其对深层资源的影响具有重要的意义。分析梳理了盆地深部地质作用对深层烃源岩生烃与演化、储层发育与保存、油气运移与聚集及油气共伴生资源富集的控制作用,总结了研究进展和面临的科学问题,提出了进一步科技攻关的方向。盆地深部地质作用与深层资源形成分布面临的主要科学问题有:深部地质作用下有机质成烃化学动力学与多元生烃潜力;深部高温高压超临界体系流体—岩石—烃类相互作用机理及超深层储层的有效性;深部油气系统中烃类相态转化、运聚成藏及保存机制;深部特殊地质环境下油气共伴生资源的形成与富集。深入开展深部地质作用与深层油气资源研究,需要从沉积盆地深部构造演化入手,围绕深部地质过程与资源效应这一核心科学问题,选择深部流体活跃的典型盆地为解剖对象,揭示深部层系物理化学作用机理,阐明不同深部地质过程对不同类型资源(油气、H2、CO2、He、地热及干热岩)形成与聚集的控制机制,探索深部资源新领域。未来的主要攻关方向包括:深部地质动力学背景与地质作用机制;深层生烃动力学与生烃量估算;深层储层发育与保持机理;深层油气运移与聚集机理;深层共伴生资源差异性富集机理。通过攻关,丰富完善盆地深部地质作用影响下油气富集理论与评价方法,也为深部其他战略性共伴生资源的评价与勘探提供科学依据。

     

  • 图  1  中国深层—超深层油气田发现时间序列示意

    Figure  1.  Discovery time series of deep and ultra-deep oil and gas fields in China

    图  2  中国氦气、二氧化碳与地热资源分布

    据文献[6, 86-96]修改。

    Figure  2.  Distribution of helium, CO2 and geothermal resources in China

  • [1] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm
    [2] 孙龙德, 邹才能, 朱如凯, 等. 中国深层油气形成、分布与潜力分析[J]. 石油勘探与开发, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm

    SUN Longde, ZOU Caineng, ZHU Rukai, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306001.htm
    [3] 贾承造, 庞雄奇. 深层油气地质理论研究进展与主要发展方向[J]. 石油学报, 2015, 36(12): 1457-1469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512001.htm

    JIA Chengzao, PANG Xiongqi. Research processes and main deve-lopment directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512001.htm
    [4] 何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm

    HE Zhiliang, JIN Xiaohui, WO Yujin, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201601003.htm
    [5] 何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质, 2017, 38(4): 633-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704001.htm

    HE Zhiliang, ZHANG Juntao, DING Qian, et al. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2017, 38(4): 633-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704001.htm
    [6] 徐永昌, 沈平, 陶明信, 等. 中国含油气盆地天然气中氦同位素分布[J]. 科学通报, 1994, 39(16): 1505-1508. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199416018.htm

    XU Yongchang, SHEN Ping, TAO Mingxin, et al. Helium isotope distribution of natural gases in oil and gas bearing basins of China[J]. Chinese Science Bulletin, 1994, 39(16): 1505-1508. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199416018.htm
    [7] 戴金星, 戴春森, 宋岩, 等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气(地质), 1994, 8(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm

    DAI Jinxing, DAI Chunsen, SONG Yan, et al. Inorganic genetic carbon dioxide gas accumulations and their characteristics in east part of China[J]. China Offshore Oil and Gas (Geology), 1994, 8(4): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199404000.htm
    [8] LIU Quanyou, DAI Jinxing, JIN Zhijun, et al. Abnormal carbon and hydrogen isotopes of alkane gases from the Qingshen gas field, Songliao Basin, China, suggesting abiogenic alkanes?[J]. Journal of Asian Earth Sciences, 2016, 115: 285-297. doi: 10.1016/j.jseaes.2015.10.005
    [9] ZHAO Wenzhi, WEI Guoqi, YANG Wei, et al. Discovery of Wanyuan-Dazhou intracratonic rift and its significance for gas exploration in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 697-707. doi: 10.1016/S1876-3804(17)30081-2
    [10] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm

    JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
    [11] 顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001

    GU Yi, HUANG Jiwen, JIA Cunshan, et al. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001
    [12] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm

    WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201232017.htm
    [13] 何治亮, 张英, 冯建赟, 等. 基于工程开发原则的干热岩目标区分类与优选[J]. 地学前缘, 2020, 27(1): 81-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001011.htm

    HE Zhiliang, ZHANG Ying, FENG Jianyun, et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers, 2012, 27(1): 81-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001011.htm
    [14] 张英, 冯建赟, 罗军, 等. 渤海湾盆地中南部干热岩选区方向[J]. 地学前缘, 2020, 27(1): 35-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001006.htm

    ZHANG Ying, FENG Jianyun, LUO Jun, et al. Screening of hot dry rock in the south-central part of the Bohai Bay Basin[J]. Earth Science Frontiers, 2020, 27(1): 35-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001006.htm
    [15] 毛景文, 李晓峰. 深部流体及其与成矿成藏关系研究现状[J]. 矿床地质, 2004, 23(4): 520-532. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200404012.htm

    MAO Jingwen, LI Xiaofeng. Mantle-derived fluids in relation to ore-forming and oil-forming processes[J]. Mineral Deposits, 2004, 23(4): 520-532. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200404012.htm
    [16] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. New York: Springer, 1984.
    [17] DIECKMANN V, SCHENK H J, HORSFIELD B, et al. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales[J]. Fuel, 1998, 77(1/2): 23-31.
    [18] 赵文智, 王兆云, 张水昌, 等. 有机质"接力成气"模式的提出及其在勘探中的意义[J]. 石油勘探与开发, 2005, 32(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200502000.htm

    ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al. Successive generation of natural gas from organic materials and its significance in future exploration[J]. Petroleum Exploration and Development, 2005, 32(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200502000.htm
    [19] BRAUN R L, BURNHAM A K. Mathematical model of oil generation, degradation, and expulsion[J]. Energy and Fuels, 1990, 4(2): 132-146. doi: 10.1021/ef00020a002
    [20] CHIARAMONTE M A, NOVELLI L. Organic matter maturity in northern Italy: some determining agents[J]. Organic Geochemistry, 1986, 10(1/3): 281-290.
    [21] MCTAVISH R A. Pressure retardation of vitrinite diagenesis, offshore north-west Europe[J]. Nature, 1978, 271(16): 648-650.
    [22] FOUCH T D, NUCCIO V F, ANDERS D E, et al. Green River petroleum system, Uinta Basin, Utah, U.S. A[C]//MAGOON L B, DOW W G. The petroleum system from source to trap: AAPG memoir 60. Tulsa: AAPG, 1994: 399-421.
    [23] 查明, 曲江秀, 张卫海. 异常高压与油气成藏机理[J]. 石油勘探与开发, 2002, 29(1): 19-23. doi: 10.3321/j.issn:1000-0747.2002.01.005

    ZHA Ming, QU Jiangxiu, ZHANG Weihai. The relationship between overpressure and reservoir forming mechanism[J]. Petroleum Exploration and Development, 2002, 29(1): 19-23. doi: 10.3321/j.issn:1000-0747.2002.01.005
    [24] PRICE L C, WENGER L M. The influence of pressure on petroleum generation and maturation as suggested by aqueous pyrolysis[J]. Organic Geochemistry, 1992, 19(1/3): 141-159.
    [25] 郝芳, 邹华耀, 方勇. 隐蔽油气藏研究的难点和前沿[J]. 地学前缘, 2005, 12(4): 481-488. doi: 10.3321/j.issn:1005-2321.2005.04.017

    HAO Fang, ZOU Huayao, FANG Yong. The difficulties and frontiers of subtle oil/gas reservoir research[J]. Earth Science Frontiers, 2005, 12(4): 481-488. doi: 10.3321/j.issn:1005-2321.2005.04.017
    [26] 彭金宁, 罗开平, 刘光祥, 等. 四川盆地热演化异常成因及热场演化特征分析[J]. 石油实验地质, 2018, 40(5): 605-612. doi: 10.11781/sysydz201805605

    PENG Jinning, LUO Kaiping, LIU Guangxiang, et al. Causes of abnormal thermal evolution and characteristics of thermal evolution in Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(5): 605-612. doi: 10.11781/sysydz201805605
    [27] 任战利, 崔军平, 祁凯, 等. 深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002004.htm

    REN Zhanli, CUI Junping, QI Kai, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020, 40(2): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202002004.htm
    [28] LIU Quanyou, ZHU Dongya, MENG Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China Earth Sciences, 2019, 62(3): 507-528. doi: 10.1007/s11430-018-9281-2
    [29] SCHIMMELMANN A, BOUDOU J P, LEWAN M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J]. Organic Geochemistry, 2001, 32(8): 1009-1018. doi: 10.1016/S0146-6380(01)00059-6
    [30] 刘文汇, 张殿伟, 王晓锋. 加氢和TSR反应对天然气同位素组成的影响[J]. 岩石学报, 2006, 22(8): 2237-2242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608013.htm

    LIU Wenhui, ZHANG Dianwei, WANG Xiaofeng. Influence of hydrogenation and TSR (thermochemical sulfate reduction) to natural gas isotopic composition[J]. Acta Petrologica Sinica, 2006, 22(8): 2237-2242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608013.htm
    [31] JIN Zhijun, ZHANG Liuping, YANG Lei, et al. A preliminary study of mantle-derived fluids and their effects on oil/gas genera-tion in sedimentary basins[J]. Journal of Petroleum Science and Engineering, 2004, 41(1/3): 45-55.
    [32] EHRENBERG S N, NADEAU P H. Sandstone vs. carbonate petro-leum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin, 2005, 89(4): 435-445. doi: 10.1306/11230404071
    [33] 蒋凌志, 顾家裕, 郭彬程. 中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J]. 沉积学报, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm

    JIANG Lingzhi, GU Jiayu, GUO Bincheng. Characteristics and mechanism of low permeability clastic reservoir in Chinese petroliferous basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401002.htm
    [34] 庞雄奇, 汪文洋, 汪英勋, 等. 含油气盆地深层与中浅层油气成藏条件和特征差异性比较[J]. 石油学报, 2015, 36(10): 1167-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201510001.htm

    PANG Xiongqi, WANG Wenyang, WANG Yingxun, et al. Compa-rison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica, 2015, 36(10): 1167-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201510001.htm
    [35] 顾忆, 万旸璐, 黄继文, 等. "大埋深高压力"条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157

    GU Yi, WAN Yanglu, HUANG Jiwen, et al. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(2): 157-164. doi: 10.11781/sysydz201902157
    [36] 尚凯. 塔中北坡超深层灰岩储集空间类型及储层分类[J]. 特种油气藏, 2018, 25(5): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805013.htm

    SHANG Kai. Reservoir space characterization and classification of the ultra-deep limestone reservoirs in the northern slope of central Tarim Basin[J]. Special Oil & Gas Reservoirs, 2018, 25(5): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201805013.htm
    [37] 罗晓容, 张立宽, 付晓飞, 等. 深层油气成藏动力学研究进展[J]. 矿物岩石地球化学通报, 2016, 35(5): 876-889. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605014.htm

    LUO Xiaorong, ZHANG Likuan, FU Xiaofei, et al. Advancesin dynamics of petroleum migration and accumulation in deep basins[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2016, 35(5): 876-889. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605014.htm
    [38] LANDER R H, WALDERHAUG O. Predicting porosity through simulating sandstone compaction and quartz cementation[J]. AAPG Bulletin, 1999, 83(3): 433-449.
    [39] 操应长, 葸克来, 王健, 等. 砂岩机械压实与物性演化成岩模拟实验初探[J]. 现代地质, 2011, 25(6): 1152-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201106014.htm

    CAO Yingchang, XI Kelai, WANG Jian, et al. Preliminary discussion of simulation experiments on the mechanical compaction and physical property evolution of sandstones[J]. Geoscience, 2011, 25(6): 1152-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201106014.htm
    [40] 钟大康, 朱筱敏, 王红军. 中国深层优质碎屑岩储层特征与形成机理分析[J]. 中国科学(D辑地球科学), 2008, 38(S1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1002.htm

    ZHONG Dakang, ZHU Xiaomin, WANG Hongjun. Characteristics and genetic mechanism of deep-buried clastic reservoir in China[J]. Science in China(Series D Earth Sciences), 2008, 51(2): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1002.htm
    [41] 王招明. 塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J]. 天然气地球科学, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm

    WANG Zhaoming. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201402003.htm
    [42] BARCLAY S A, WORDEN R H. Geochemical modelling of diagenetic reactions in a sub-arkosic sandstone[J]. Clay Minerals, 2000, 35(1): 57-57. http://www.onacademic.com/detail/journal_1000040201829110_c268.html
    [43] 黄思静, 谢连文, 张萌, 等. 中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系[J]. 成都理工大学学报(自然科学版), 2004, 31(3): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200403009.htm

    HUANG Sijing, XIE Lianwen, ZHANG Meng, et al. Formation mechanism of authigenic chlorite and relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3): 273-281. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG200403009.htm
    [44] 钟大康, 朱筱敏, 李树静, 等. 早期碳酸盐胶结作用对砂岩孔隙演化的影响: 以塔里木盆地满加尔凹陷志留系砂岩为例[J]. 沉积学报, 2007, 25(6): 885-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706011.htm

    ZHONG Dakang, ZHU Xiaomin, LI Shujing, et al. Influence of early carbonate cementation on the evolution of sandstones: a case study from Silurian sandstones of Manjiaer Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2007, 25(6): 885-890. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200706011.htm
    [45] BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability[J]. AAPG Bulletin, 2002, 86(2): 301-328.
    [46] 石良, 金振奎, 闫伟, 等. 异常高压对储集层压实和胶结作用的影响: 以渤海湾盆地渤中凹陷西北次凹为例[J]. 石油勘探与开发, 2015, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503008.htm

    SHI Liang, JIN Zhenkui, YAN Wei, et al. Influence of overpressure on reservoir compaction and cementation: a case from northwestern subsag, Bozhong Sag, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2015, 42(3): 310-318. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503008.htm
    [47] 李会军, 吴泰然, 吴波, 等. 中国优质碎屑岩深层储层控制因素综述[J]. 地质科技情报, 2004, 23(4): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200404016.htm

    LI Huijun, WU Tairan, Wu Bo, et al. Distribution and controlling factors of high quality clastic deeply buried reservoirs in China[J]. Geological Science and Technology Information, 2004, 23(4): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200404016.htm
    [48] 林潼, 李文厚, 孙平, 等. 新疆准噶尔盆地南缘深层有利储层发育的影响因素[J]. 地质通报, 2013, 32(9): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201309016.htm

    LIN Tong, LI Wenhou, SUN Ping, et al. Factors influencing deep favorable reservoirs on the southern margin of Junggar Basin, Xinjiang Province[J]. Geological Bulletin of China, 2013, 32(9): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201309016.htm
    [49] 张惠良, 张荣虎, 杨海军, 等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价: 以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J]. 石油勘探与开发, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm

    ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characte-rization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs: a case study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201402005.htm
    [50] 远光辉, 操应长, 葸克来, 等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报, 2013, 34(5): 853-866. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305006.htm

    YUAN Guanghui, CAO Yingchang, XI Kelai, et al. Feldspar dissolution and its impact on physical properties of Paleogene clastic reser-voirs in the northern slope zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201305006.htm
    [51] MOORE C H, DRUCKMAN Y. Burial diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana[J]. AAPG Bulletin, 1981, 65(4): 597-628.
    [52] JAMESON J. Models of porosity formation and their impact on reservoir description, Lisburne Field, Prudhoe Bay, Alaska[J]. AAPG Bulletin, 1994, 78(11): 1651-1678.
    [53] HE Zhiliang, DING Qian, WO Yujin, et al. Experiment of carbonate dissolution: implication for high quality carbonate reservoir formation in deep and ultradeep basins[J]. Geofluids, 2017, 2017(2): 8439259.
    [54] 丁茜, 何治亮, 沃玉进, 等. 高温高压条件下碳酸盐岩溶蚀过程控制因素[J]. 石油与天然气地质, 2017, 38(4): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704015.htm

    DING Qian, HE Zhiliang, WO Yujin, et al. Factors controlling carbonate rock dissolution under high temperature and pressure[J]. Oil & Gas Geology, 2017, 38(4): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704015.htm
    [55] 范明, 何治亮, 李志明, 等. 碳酸盐岩溶蚀窗的形成及地质意义[J]. 石油与天然气地质, 2011, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm

    FAN Ming, HE Zhiliang, LI Zhiming, et al. Dissolution window of carbonate rocks and its geological significance[J]. Oil & Gas Geology, 2011, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm
    [56] 何治亮, 魏修成, 钱一雄, 等. 海相碳酸盐岩优质储层形成机理与分布预测[J]. 石油与天然气地质, 2011, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm

    HE Zhiliang, WEI Xiucheng, QIAN Yixiong, et al. Forming mechanism and distribution prediction of quality marine carbonate reservoirs[J]. Oil & Gas Geology, 2011, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm
    [57] TAYLOR T R, GILES M R, HATHON L A, et al. Sandstone diage-nesis and reservoir quality prediction: models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
    [58] EHRENBERG S N, WALDERHAUG O, BJØRLYKKE K. Carbonate porosity creation by mesogenetic dissolution: reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
    [59] CAI Chunfang, HE Wenxian, JIANG Lei, et al. Petrological and geochemical constraints on porosity difference between Lower Triassic sour-and sweet-gas carbonate reservoirs in the Sichuan Basin[J]. Marine and Petroleum Geology, 2014, 56: 34-50.
    [60] 马永生, 郭彤楼, 朱光有, 等. 硫化氢对碳酸盐储层溶蚀改造作用的模拟实验证据: 以川东飞仙关组为例[J]. 科学通报, 2007, 52(S1): 136-141. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1016.htm

    MA Yongsheng, GUO Tonglou, ZHU Guangyou, et al. Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs: an example of Feixianguan Formation, east Sichuan[J]. Chinese Science Bulletin, 2007, 52(1): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2007S1016.htm
    [61] HAO Fang, ZHANG Xuefeng, WANG Cunwu, et al. The fate of CO2 derived from thermochemical sulfate reduction (TSR) and effect of TSR on carbonate porosity and permeability, Sichuan Basin, China[J]. Earth-Science Reviews, 2015, 141: 154-177.
    [62] 金之钧, 朱东亚, 胡文瑄, 等. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 2006, 80(2): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602014.htm

    JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica, 2006, 80(2): 245-253. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602014.htm
    [63] 赵文智, 沈安江, 郑剑锋, 等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学(地球科学), 2014, 44(9): 1925-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409005.htm

    ZHAO Wenzhi, SHEN Anjiang, ZHENG Jianfeng, et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science China (Earth Sciences), 2014, 57(10): 2498-2511. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409005.htm
    [64] CANTRELL D, SWART P, HAGERTY R. Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia[J]. GeoArabia, 2004, 9(2): 11-36.
    [65] LIU Shugen, HUANG Wenming, JANSA L F, et al. Hydrothermal dolomite in the Upper Sinian (Upper Proterozoic) Dengying Formation, East Sichuan Basin, China[J]. Acta Geologica Sinica, 2014, 88(5): 1466-1487.
    [66] 蒋裕强, 谷一凡, 李开鸿, 等. 四川盆地中部中二叠统热液白云岩储渗空间类型及成因[J]. 天然气工业, 2018, 38(2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201802003.htm

    JIANG Yuqiang, GU Yifan, LI Kaihong, et al. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, central Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201802003.htm
    [67] 何治亮, 马永生, 张军涛, 等. 中国的白云岩与白云岩储层: 分布、成因与控制因素[J]. 石油与天然气地质, 2020, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm

    HE Zhiliang, MA Yongsheng, ZHANG Juntao, et al. Distribution, genetic mechanism and control factors of dolomite and dolomite reservoirs in China[J]. Oil & Gas Geology, 2020, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm
    [68] 何治亮, 云露, 尤东华, 等. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘, 2019, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htm

    HE Zhiliang, YUN Lu, YOU Donghua, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901003.htm
    [69] ZHU Dongya, MENG Qingqiang, JIN Zhijun, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 2015, 59: 232-244.
    [70] 胡安平, 潘立银, 郝毅, 等. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质, 2018, 23(2): 39-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201802006.htm

    HU Anping, PAN Liyin, HAO Yi, et al. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23(2): 39-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201802006.htm
    [71] LAVOIE D, CHI Guoxiang, BRENNAN-ALPERT P, et al. Hydrothermal dolomitization in the Lower Ordovician romaine formation of the Anticosti Basin: significance for hydrocarbon exploration[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(4): 454-471.
    [72] DAVIES G R, SMITH JR L B. Structurally controlled hydrothermal dolomite reservoir facies: an overview[J]. AAPG Bulletin, 2006, 90(11): 1641-1690.
    [73] 陈代钊. 构造-热液白云岩化作用与白云岩储层[J]. 石油与天然气地质, 2008, 29(5): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200805014.htm

    CHEN Daizhao. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J]. Oil & Gas Geology, 2008, 29(5): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200805014.htm
    [74] MACHEL H G, LONNEE J. Hydrothermal dolomite: a product of poor definition and imagination[J]. Sedimentary Geology, 2002, 152(3/4): 163-171.
    [75] SVERJENSKY D A, GARVEN G. Tracing great fluid migrations[J]. Nature, 1992, 356(6369): 481-482.
    [76] GARVEN G. Continental-scale groundwater flow and geologic processes[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 89-117.
    [77] 包友书. 济阳坳陷超压和应力场对页岩油富集的影响[J]. 断块油气田, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm

    BAO Youshu. Influence of overpressure and stress on shale oil enrichment in Jiyang Depression[J]. Fault-Block Oil and Gas Field, 2018, 25(5): 585-588. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201805009.htm
    [78] 郝芳, 邹华耀, 方勇, 等. 断-压双控流体流动与油气幕式快速成藏[J]. 石油学报, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm

    HAO Fang, ZOU Huayao, FANG Yong, et al. Overpressure-fault controlled fluid flow and episodic hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm
    [79] 朱联强, 袁海锋, 林雪梅, 等. 四川盆地安岳构造寒武系龙王庙组成岩矿物充填期次及油气成藏[J]. 石油实验地质, 2019, 41(6): 812-820. doi: 10.11781/sysydz201906812

    ZHU Lianqiang, YUAN Haifeng, LIN Xuemei, et al. Diagenesis and hydrocarbon accumulation of the Cambrian Longwangmiao Formation in Anyue, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(6): 812-820. doi: 10.11781/sysydz201906812
    [80] 邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
    [81] MCKIRDY D M, CHIVAS A R. Nonbiodegraded aromatic condensate associated with volcanic supercritical carbon dioxide, Otway Basin: implications for primary migration from terrestrial organic matter[J]. Organic Geochemistry, 1992, 18(5): 611-627.
    [82] BONDAR E, KOEL M. Application of supercritical fluid extraction to organic geochemical studies of oil shales[J]. Fuel, 1998, 77(3): 211-213.
    [83] ZHU Dongya, MENG Qingqiang, LIU Quanyou, et al. Natural enhancement and mobility of oil reservoirs by supercritical CO2 and implication for vertical multi-trap CO2 geological storage[J]. Journal of Petroleum Science and Engineering, 2018, 161: 77-95.
    [84] SIMONEIT B R T, LONSDALE P F. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin[J]. Nature, 1982, 295(5846): 198-202.
    [85] HU Wenxuan, JIN Zhijun, SONG Yucai, et al. Theoretical calculation model of heat transfer for deep-derived supercritical fluids with a case study[J]. Acta Geologica Sinica, 2004, 78(1): 221-229.
    [86] 徐永昌. 天然气中氦同位素分布及构造环境[J]. 地学前缘, 1997, 4(3/4): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.031.htm

    XU Yongchang. Helium isotope distribution of natural gasses and its structural setting[J]. Earth Science Frontiers, 1997, 4(3/4): 185-190. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z2.031.htm
    [87] 张雪, 刘建朝, 李荣西, 等. 中国富氦天然气资源研究现状与进展[J]. 地质通报, 2018, 37(2/3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1026.htm

    ZHANG Xue, LIU Jianchao, LI Rongxi, et al. President situation and progress in the study of helium gas resources in China[J]. Geological Bulletin of China, 2018, 37(2/3): 476-486. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2018Z1026.htm
    [88] WANG Yibo, HU Shengbiao, WANG Zhuting, et al. Heat flow, heat production, thermal structure and its tectonic implication of the southern Tan-Lu Fault Zone, East-Central China[J]. Geothermics, 2019, 82: 254-266.
    [89] 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903029.htm

    TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium resources and discovery of first supergiant helium reserve in China: Hetianhe Gas Field[J]. Earth Science, 2019, 44(3): 1024-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903029.htm
    [90] 毛翔, 国殿斌, 罗璐, 等. 世界干热岩地热资源开发进展与地质背景分析[J]. 地质论评, 2019, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm

    MAO Xiang, GUO Dianbin, LUO Lu, et al. The global development process of hot dry rock (enhanced geothermal system) and its geological background[J]. Geological Review, 2019, 65(6): 1462-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201906018.htm
    [91] LLANOS E M, ZARROUK S J, HOGARTH R A. Simulation of the habanero enhanced geothermal system (EGS), Australia[C]//Proceedings World Geothermal Congress. Melbourne, Australia, 2015.
    [92] RUTQVIST J, JEANNE P, DOBSON P F, et al. The northwest geysers EGS demonstration project, California-part 2: modeling and interpretation[J]. Geothermics, 2016, 63: 120-138.
    [93] KOELBEL T, GENTER A. Enhanced geothermal systems: the Soultz-sous-Forêts project[C]//Proceedings in Energy. Cham: Springer International Publishing, 2017: 243-248.
    [94] 何治亮, 冯建赟, 张英, 等. 试论中国地热单元分级分类评价体系[J]. 地学前缘, 2017, 24(3): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703019.htm

    HE Zhiliang, FENG Jianyun, ZHANG Ying, et al. A tentative discussion on an evaluation system of geothermal unit ranking and classification in China[J]. Earth Science Frontiers, 2017, 24(3): 168-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703019.htm
    [95] 王晓东, 李祥新, 宫进忠, 等. 京津冀基岩区地热资源远景的地球化学区划[J]. 物探与化探, 2019, 43(6): 1246-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906011.htm

    WANG Xiaodong, LI Xiangxin, GONG Jinzhong, et al. Geochemical regional planning of geothermal resource prospect in Beijing-Tianjin-Hebei bedrock region[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1246-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906011.htm
    [96] 赵斐宇, 姜素华, 李三忠, 等. 中国东部无机CO2气藏与(古)太平洋板块俯冲关联[J]. 地学前缘, 2017, 24(4): 370-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704039.htm

    ZHAO Feiyu, JIANG Suhua, LI Sanzhong, et al. Correlation of inorganic CO2 reservoirs in East China to subduction of (Paleo-) Pacific Plate[J]. Earth Science Frontiers, 2017, 24(4): 370-384. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704039.htm
  • 加载中
图(2)
计量
  • 文章访问数:  937
  • HTML全文浏览量:  136
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-06
  • 修回日期:  2020-07-21
  • 刊出日期:  2020-09-28

目录

    /

    返回文章
    返回