CUI Jingwei, HOU Lianhua, ZHU Rukai, LI Shixiang, WU Songtao. Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(2): 280-288. doi: 10.11781/sysydz201902280
Citation: CUI Jingwei, HOU Lianhua, ZHU Rukai, LI Shixiang, WU Songtao. Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(2): 280-288. doi: 10.11781/sysydz201902280

Thermal conductivity properties of rocks in the Chang 7 shale strata in the Ordos Basin and its implications for shale oil in situ development

doi: 10.11781/sysydz201902280
  • Received Date: 2018-11-21
  • Rev Recd Date: 2019-02-15
  • Publish Date: 2019-03-28
  • In situ conversion is a key area of China’s continental shale oil research. The thermal properties of rocks in the seventh member of the Triassic Yanchang Formation (Chang 7) in the Ordos Basin, especially the high temperature thermal properties are still unknown, which seriously restricts the optimization and feasibility evaluation of in situ conversion. Some fresh samples were collected from the Chang 7 shale layer and tested with a quick thermal conductivity meter, differential scanning calorimetry and thermal expansion instrument to obtain the thermal diffusivity, specific heat capacity, thermal expansion coefficient, and thermal conductivity parameter of muddy siltstones, tuffs, mudstones and shale. The thermal diffusivity and thermal conductivity of rocks with different lithologies in the Chang 7 member are different, and decrease with the decrease of sandy content, namely argillaceous siltstones > tuffstones > mudstones > shale. The thermal diffusivity and thermal conductivity have anisotropy, and the horizontal direction is 1 to 3.5 times the vertical direction, and the difference increases as the temperature increases. With the increase of temperature, the thermal diffusivity of rock decreases, the specific heat capacity of rocks increases and the thermal conductivity first decreases and then increases. The anisotropy of shale thermal properties is the strongest, which is a manifestation of rock heterogeneity, and is related to microscopic strata. The sandstone anisotropy may be related to permeability in different directions of rock.

     

  • loading
  • [1]
    EIA.Annual Energy outlook 2013 with projections to 2040[R].Washington,DC:U.S.Energy Information Administration,2013.
    [2]
    杨华,李士祥,刘显阳.鄂尔多斯盆地致密油、页岩油特征及资源潜力[J].石油学报,2013,34(1):1-11.

    YANG Hua,LI Shixiang,LIU Xianyang.Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J].Acta Petrolei Sinica,2013,34(1):1-11.
    [3]
    黄薇,梁江平,赵波,等.松辽盆地北部白垩系泉头组扶余油层致密油成藏主控因素[J].古地理学报,2013,15(5):635-644.

    HUANG Wei,LIANG Jiangping,ZHAO Bo,et al.Main controlling factors of tight oil accumulations in the Fuyu Layer of Cretaceous Quantou Formation in northern Songliao Basin[J].Journal of Palaeogeography,2013,15(5):635-644.
    [4]
    付锁堂,张道伟,薛建勤,等.柴达木盆地致密油形成的地质条件及勘探潜力分析[J].沉积学报,2013,31(4):672-682.

    FU Suotang,ZHANG Daowei,XUE Jianqin,et al.Exploration potential and geological conditions of tight oil in the Qaidam Basin[J].Acta Sedimentologica Sinica,2013,31(4):672-682.
    [5]
    梁狄刚,冉隆辉,戴弹申,等.四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J].石油学报,2011,32(1):8-17.

    LIANG Digang,RAN Longhui,DAI Danshen,et al.A re-recognition of the prospecting potential of Jurassic large-area and non-conventional oils in the central-northern Sichuan Basin[J].Acta Petrolei Sinica,2011,32(1):8-17.
    [6]
    赵文智,胡素云,侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发,2018,45(4):537-545.

    ZHAO Wenzhi,HU Suyun,HOU Lianhua.Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J].Petroleum Exploration and Development,2018,45(4):537-545.
    [7]
    龚建洛,张金功,惠涛,等.沉积岩平行层面与垂直层面方向热导率与孔隙连通性之间的关系[J].吉林大学学报(地球科学版),2014,44(6):1789-1797. GONG Jianluo,ZHANG Jingong,HUI Tao,et al.Thermal conductivity difference between Parallel and perpendicular to bedding plane of sedimentary rocks and its relationship to the diffe-rence of pore connectivity[J].Journal of Jilin University (Earth Science Edition),2014,44(6):1789-1797.
    [8]
    欧新功,金振民,王璐,等.中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J].岩石学报,2004,20(1):109-118.

    OU Xingong,JIN Zhenmin,WANG Lu,et al.Thermal conductivity and its anisotropy of rocks from the depth of 100-2 000 m mainhole of Chinese continental scientific drilling:revelations to the study on thermal structure of subduction zone[J].Acta Petrologica Sinica,2004,20(1):109-118.
    [9]
    程超,于文刚,贾婉婷,等.岩石热物理性质的研究进展及发展趋势[J].地球科学进展,2017,32(10):1072-1083.

    CHENG Chao,YU Wengang,JIA Wanting,et al.Research progress and development tendency about thermal physical properties of rocks[J].Advances in Earth Science,2017,32(10):1072-1083.
    [10]
    于永军,梁卫国,毕井龙,等.油页岩热物理特性试验与高温热破裂数值模拟研究[J].岩石力学与工程学报,2015,34(6):1106-1115.

    YU Yongjun,LIANG Weiguo,BI Jinglong,et al.Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(6):1106-1115.
    [11]
    苗社强,李和平,陈刚.高温高压下矿物岩石热导率的实验研究进展[J].地球物理学进展,2013,28(5):2453-2466.

    MIAO Sheqiang,LI Heping,CHEN Gang.Progress of high temperature and high pressure experimental study on the thermal conductivity of the minerals and rocks[J].Progress in Geophy-sics,2013,28(5):2453-2466.
    [12]
    HORAI K I.Thermal conductivity of rock-forming minerals[J].Journal of Geophysical Research,1971,76(5):1278-1308.
    [13]
    张文正,杨华,杨奕华,等.鄂尔多斯盆地长7优质烃源岩的岩石学、元素地球化学特征及发育环境[J].地球化学,2008,37(1):59-64.

    ZHANG Wenzheng,YANG Hua,YANG Yihua,et al.Petrology and element geochemistry and development environment of Yanchang Formation Chang-7 high quality source rocks in Ordos Basin[J].Geochimica,2008,37(1):59-64.
    [14]
    崔景伟,朱如凯,李士祥,等.致致密砂岩油可动量及其主控因素:以鄂尔多斯盆地三叠系延长组长7为例[J].石油实验地质,2016,38(4):536-542.

    CUI Jingwei,ZHU Rukai,LI Shixiang,et al.Movable oil and its controlling factors in tight sandstones:a case study of the Tria-ssic Chang 7 reservoir,Yanchang Formation,Ordos Basin[J].Petroleum Geology & Experiment,2016,38(4):536-542.
    [15]
    徐胜平,彭涛,吴基文,等.两淮煤田煤系岩石热导率特征及其对地温场的影响[J].煤田地质与勘探,2014,42(6):76-81.

    XU Shengping,PENG Tao,WU Jiwen,et al.The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei Coalfield[J].Coal Geology & Exploration,2014,42(6):76-81.
    [16]
    宋宁,史光辉,高国强,等.苏北盆地古近系—上白垩统的岩石热导率[J].复杂油气藏,2011,4(1):10-13.

    SONG Ning,SHI Guanghui,GAO Guoqiang,et al.Thermal conductivity of Paleogene-Upper Cretaceous rocks in Subei Basin[J].Complex Hydrocarbon Reservoirs,2011,4(1):10-13.
    [17]
    赵永信,杨淑贞,张文仁,等.岩石热导率的温压实验及分析[J].地球物理学进展,1995,10(1):104-113.

    ZHAO Yongxin,YANG Shuzhen,ZHANG Wenren,et al.An experimental study of rock thermal conductivity under different temperature and pressure[J].Progress in Geophysics,1995,10(1):104-113.
    [18]
    段忠丰,庞忠和,杨峰田.华北地区煤系地层岩石热导率特征及对热害的影响[J].煤炭科学技术,2013,41(8):15-17.

    DUAN Zhongfeng,PANG Zhonghe,YANG Fengtian.Features of coal-bearing strata rock thermal conductivity and influence on heat hazard in North China[J].Coal Science and Technology,2013,41(8):15-17.
    [19]
    CUI J W,ZHU R K,LUO Z,et al.Sedimentary and geochemical characteristics of Triassic Chang 7 Member shale in southeastern Ordos Basin,Central China[J].Petroleum Science,2019.(in press)
    [20]
    张文正,杨华,彭平安,等.晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J].地球化学,2009,38(6):573-582.

    ZHANG Wenzheng,YANG Hua,PENG Ping’an,et al.The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J].Geochimica,2009,38(6):573-582.
    [21]
    邓秀芹,蔺昉晓,刘显阳,等.鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J].古地理学报,2008,10(2):159-166.

    DENG Xiuqin,LIN Fangxiao,LIU Xianyang,et al.Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J].Journal of Palaeogeography,2008,10(2):159-166.
    [22]
    周科,孙友宏,李强,等.农安油页岩热重及热物理性质试验研究[J].世界地质,2016,35(4):1178-1184.

    ZHOU Ke,SUN Youhong,LI Qiang,et al.Experimental research about thermogravimetric analysis and thermal physical properties of Nong’an oil shale[J].Global Geology,2016,35(4):1178-1184.
    [23]
    DUCHKOV A D,SOKOLOVA L S,AYUNOV D E,et al.Thermal conductivity of the Bazhenovo Formation rocks in the Salym area (West Siberian Plate)[J].Russian Geology and Geophysics,2016,57(7):1078-1089.
    [24]
    PIA G,CASNEDI L,SANNA U.Porosity and pore size distribution influence on thermal conductivity of yttria-stabilized zirconia:experimental findings and model predictions [J].Ceramics International,2016,42(5):5802-5809.
    [25]
    何丽娟,胡圣标,杨文采,等.中国大陆科学钻探主孔揭示的大陆地壳生热模型[J].岩石学报,2006,22(11):2808-2814.

    HE Lijuan,HU Shengbiao,YANG Wencai,et al.Heating genera-tion model for the continental crust based on the main hole of the Chinese Continental Scientific Drilling Project[J].Acta Petrologica Sinica,2006,22(11):2808-2814.
    [26]
    王钧,汪缉安,沈继英,等.塔里木盆地的大地热流[J].地球科学(中国地质大学学报),1995,20(4):399-404. WANG Jun,WANG Ji’an,SHEN Jiying,et al.Heat flow in Tarim Basin[J].Earth Science(Journal of China University of Geosciences),1995,20(4):399-404.
    [27]
    崔景伟.细粒岩岩心的现场封存方法以及现场封存装置:201710941811.5[P].2018-05-04. CUI Jingwei.Field storage methods and storage devices for fine-grained cores:201710941811.5[P].2018-05-04.
    [28]
    许模,王迪,蒋良文,等.岩土体导热系数研究进展[J].地球科学与环境学报,2011,33(4):421-427.

    XU Mo,WANG Di,JIANG Liangwen,et al.Review on thermal conductivity coefficient of rock and soil mass[J].Journal of Earth Sciences and Environment,2011,33(4):421-427.
    [29]
    SEIPOLD U,HUENGES E.Thermal properties of gneisses and amphibolites:high pressure and high temperature investigations of KTB-rock samples[J].Tectonophysics,1997,291(1/4):173-178.
    [30]
    FUCHS S,SCHÜTZ F,FÖRSTER H J,et al.Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks:correction charts and new conversion equations[J].Geothermics,2013,47:40-52.
    [31]
    AICHLMAYR H T,KULACKI F A.The effective thermal conducti-vity of saturated porous media[J].Advances in Heat Transfer,2006,39:377-460.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (989) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return