Please wait a minute...
Petroleum Geology & Experiment  2019, Vol. 41 Issue (5): 739-745    DOI: 10.11781/sysydz201905739
Current Issue | Archive | Adv Search |
Preservation of crude oil with different properties and implication for deep oil exploration
WANG Qiang1,2,3, NING Chuanxiang1,2,3, MA Zhongliang1,2,3, ZHENG Lunju1,2,3, ZHUANG Xinbing3, LI Fengxun3
1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi, Jiangsu 214126, China;
2. SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi, Jiangsu 214126, China;
3. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China
Download: PDF (1289 KB)     
Export: BibTeX | EndNote (RIS)      
Abstract  An evaluation of deep crude oil preservation ability identifies the depth limit of crude oil exploration. Thermal simulation products of crude oils with different properties and limestone media were analyzed and combined with oil cracking theory to develop an oil preservation index (OPI). The simulated temperature/thermal evolution degree is the key factor affecting crude oil preservation. OPI decreased by 0.230, 0.324 and 0.350, respectively, with VRo increasing from <1.2%, 1.2%-2.0% to >2.0%. Crude oil with different properties often shows different preservation ability. Light oil, rich in saturated hydrocarbons with fewer branched chains and higher H/C atom ratio, shows stronger preservation ability in the early stage. But once the cracking threshold is reached, rapid cracking occurs. Heavy oil has more branched chains and heteroatoms due to the presence of non-hydrocarbons and asphaltene undergoes faster cracking in the early stage, and shows higher stability in the later stage. But most of the residue is solid bitumen and other macromolecule condensates. The depth limit of crude oil preservation was predicted by using the experimental results of thermal simulation in Manxi region, Tarim Basin. The depth limit of crude oil exploration in the southern Manxi region is 8 200 m.
Key wordsthermal simulation      preservation ability      crude oil cracking      lowest bound depth     
Received: 25 February 2019      Published: 23 September 2019
ZTFLH:  TE135  
Cite this article:

.Preservation of crude oil with different properties and implication for deep oil exploration[J].Petroleum Geology & Experiment,2019,41(5):739-745.

URL:

http://www.sysydz.net/EN/10.11781/sysydz201905739     OR     http://www.sysydz.net/EN/Y2019/V41/I5/739

[1] 田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827. TIAN Hui,WANG Zhaoming,XIAO Zhongyao,et al.Oil cracking to gases:kinetic modeling and geological significance[J].Chinese Science Bulletin,2006,51(22):2763-2770.
[2] TISSOT B P,WELTE D H.Petroleum formation and occurrence:a new approach to oil and gas exploration[M].Berlin:Springer,1978:185-188.
[3] HUNT J M.Petroleum geochemistry and geology[m].2nd ed.New York:W.H.Freeman,1996:269.
[4] 朱光有,杨海军,苏劲,等.塔里木盆地海相石油的真实勘探潜力[J].岩石学报,2011,28(3):1333-1347. ZHU Guangyou,YANG Haijun,SU Jin,et al.True exploration potential of marine oils in the Tarim Basin[J].Acta Petrologica Sinica,2012,28(4):1333-1347.
[5] 赵贤正,金凤鸣,王权,等.渤海湾盆地牛东1超深潜山高温油气藏的发现及其意义[J].石油学报,2011,32(6):915-927. ZHAO Xianzheng,JIN Fengming,WANG Quan,et al.Niudong 1 ultra-deep and ultra-high temperature subtle buried hill field in Bohai Bay Basin:discovery and significance[J].Acta Petrolei Sinica,2011,32(6):915-927.
[6] 朱光有,曹颖辉,闫磊,等.塔里木盆地8000 m以深超深层海相油气勘探潜力与方向[J].天然气地球科学,2018,29(6):755-772. ZHU Guangyou,CAO Yinghui,YAN Lei,et al.Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J].Natural Gas Geoscience,2018,29(6):755-772.
[7] 翟晓先,顾忆,钱一雄,等.塔里木盆地塔深1井寒武系油气地球化学特征[J].石油实验地质,2007,29(4):329-333. ZHAI Xiaoxian,GU Yi,QIAN Yixiong,et al.Geochemical characteristics of the Cambrian oil and gas in well Tashen 1,the Tarim Basin[J].Petroleum Geology & Experiment,2007,29(4):329-333.
[8] 金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22. JIN Zhijun.Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J].Earth Science Frontiers,2005,12(3):15-22.
[9] 金之钧.中国海相碳酸盐岩层系油气形成与富集规律[J].中国科学:地球科学,2011,41(7):910-926. JIN Zhijun.Formation and accumulation of oil and gas in marine carbonate sequences in Chinese sedimentary basins[J].Science China Earth Sciences,2012,55(3):368-385.
[10] 庞雄奇,金之钧,姜振学,等.叠合盆地油气资源评价问题及其研究意义[J].石油勘探与开发,2002,29(1):9-13. PANG Xiongqi,JIN Zhijun,JIANG Zhenxue,et al.Evaluation of hydrocarbon resources of superimposed basin and its significance[J].Petroleum Exploration & Development,2002,29(1):9-13.
[11] 黄诚.叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J].石油实验地质,2019,41(3):379-389. HUANG Cheng.Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method:a case study of Shunbei area,Tarim Basin[J].Petroleum Geology & Experiment,2019,41(3):379-389.
[12] 解巧明,王震亮,尹成明,等.塔里木盆地西南坳陷英吉沙与皮山地区构造演化特征及对油气成藏的影响[J].石油实验地质,2019,41(2):165-175. XIE Qiaoming,WANG Zhenliang,YIN Chengming,et al.Tectonic evolution characteristics of Yingjisha and Pishan areas and the influence on petroleum accumulation in the southwest depression,Tarim Basin[J].Petroleum Geology & Experiment,2019,41(2):165-175.
[13] 姜海健,罗云,李群,等.塔里木盆地麦盖提西部地区上石炭统不整合及储层发育模式[J].石油实验地质,2017,39(6):776-782. JIANG Haijian,LUO Yun,LI Qun,et al.Upper Carboniferous unconformity and reservoir development model of the western Maigaiti area,Tarim Basin[J].Petroleum Geology & Experiment,2017,39(6):776-782.
[14] 高岗,黄志龙,柳广第,等.碳酸盐岩油气生成模拟方法[M].北京:石油工业出版社,2000:18-19. GAO Gang,HUANG Zhilong,LIU Guangdi,et al.Simulation method of hydrocarbon generation in carbonate rocks[M].Beijing:Petroleum Industry Press,2000:18-19.
[15] 郑伦举,关德范,郭小文,等.影响海相烃源岩热解生烃过程的地质条件[J].地球科学(中国地质大学学报),2015,40(5):909-917. ZHENG Lunju,GUAN Defan,GUO Xiaowen,et al.Key geolo-gical conditions affecting pyrolysis experiments of marine source rocks for hydrocarbon generation[J].Earth Science(Journal of China University of Geosciences),2015,40(5):909-917.
[16] MAHLSTEDT N,HORSFIELD B,DIECKMANN V.Second order reactions as a prelude to gas generation at high maturity[J].Organic Geochemistry,2008,39(8):1125-1129.
[17] BEHAR F,KRESSMANN S,RUDKIEWICZ J L,et al.Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J].Organic Geochemistry,1992,19(1/3):173-189.
[18] BARKER C.Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs[J].AAPG Bulletin,1990,74(8):1254-1261.
[19] 柳广弟.石油地质学[M].4版.北京:石油工业出版社,2009:134-140. LIU Guangdi.Petroleum geology[M].4th ed.Beijing:Petroleum Industry Press,2009:134-140.
[20] HILL R J,TANG Yongchun,KAPLAN I R.Insights into oil cracking based on laboratory experiments[J].Organic Geoche-mistry,2003,34(12):1651-1672.
[21] PEPPER A S,DODD T A.Simple kinetic models of petroleum formation.Part Ⅱ:oil-gas cracking[J].Marine and Petroleum Geology,1995,12(3):321-340.
[22] BEHAR F,LORANT F,MAZEAS L.Elaboration of a new compositional kinetic schema for oil cracking[J].Organic Geoche-mistry,2008,39(6):764-782.
[23] 陈双,黄海平,张博原,等.原油及源内残余沥青裂解成气差异及地质意义[J].天然气地球科学,2017,28(9):1375-1384. CHEN Shuang,HUANG Haiping,ZHANG Boyuan,et al.Difference in gas generation from thermal cracking of oil within reservoir and from residual bitumen within source rock and its geological significance[J].Natural Gas Geoscience,2017,28(9):1375-1384.
[24] 郑伦举,王强,秦建中,等.海相古油藏及可溶有机质再生烃气能力研究[J].石油实验地质,2008,30(4):390-395. ZHENG Lunju,WANG Qiang,QIN Jianzhong,et al.Hydrocarbon-regeneration capability of marine paleo-reservoir and soluble organic matter[J].Petroleum Geology & Experiment,2008,30(4):390-395.
[25] SCHENK H J,DI PRIMIO R,HORSFIELD B.The conversion of oil into gas in petroleum reservoirs.Part 1:comparative kinetic investigation of gas generation from crude oils of lacustrine,marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J].Organic Geochemistry,1997,26(7/8):467-481.
[26] 赵靖舟,田军,庞雯,等.塔里木盆地满西地区海相油气成藏规律[J].海相油气地质,2002,7(1):7-11. ZHAO Jingzhou,TIAN Jun,PANG Wen,et al.Regularity of hydrocarbon accumulation in west Manjiar region, Tarim Basin[J]. Marine Origin Petroleum Geology, 2002, 7(1):7-11.
[1] WU Jia, QI Wen, LUO Qingyong, CHEN Quan, SHI Shengbao, LI Meijun, ZHONG Ningning. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications[J]. 石油实验地质, 2019, 41(2): 260-267.
[2] GAO Dongchen, GUO Chao, JIANG Chengfu, ZHANG Lixia, WANG Hui, SHI Peng, CHEN Yiyi. Hydrocarbon generation simulation of low-maturity shale in Shanxi Formation, Ordos Basin[J]. 石油实验地质, 2018, 40(3): 454-460.
[3] Zhang Hongan, Zhang Shuang, Zhang Yunxian, Yao Suping. Simulation of hydrocarbon generation of the Paleozoic coals in the Dongpu Sag, Bohai Bay Basin[J]. 石油实验地质, 2017, 39(4): 527-534.
[4] Liu Hu, Liao Zewen, Qi Minghui, Zhang Haizu, Du Junyan, Yang Shan. Stable carbon isotope distribution patterns of kerogen and its derived hydrocarbons constrained by primary biomass[J]. 石油实验地质, 2016, 38(5): 652-658.
[5] Song Xiaoying, Zhang Caiming, Zheng Lunju, Zhang Qu, Cheng Qiuquan. Benzohopane maturity index in source rock thermal simulation[J]. 石油实验地质, 2016, 38(2): 240-243.
[6] Yang Yan, Lei Tianzhu, Xing Lantian, Cai Jingong, Wu Yingqin, Si Guicai. Oil generation abilities of chemically bound organic matter in different types of organic clay complexes[J]. 石油实验地质, 2015, 37(4): 487-493.
[7] Xue Luo, Xu Sihuang, Yuan Caiping, Liu Xiaoxia, Li Songfeng. Evolution characteristics of methane stable carbon isotope in thermal simulation experiment:Discussion of δ13C1-Ro relationship under experimental and natural conditions[J]. 石油实验地质, 2012, 34(6): 617-622.
[8] Huang Jiwen, Gu Yi, Chen Qianglu, Shao Zhibing. Thermal simulation of Silurian bituminous sandstone and its significance of hydrocarbon supply in northern Tarim Basin[J]. 石油实验地质, 2012, 34(4): 445-450.
[9] Zhang Juhe, Huo Qiuli, Feng Zihui. Comparison of light hydrocarbon between de-absorbed gas and discharged gas in thermal simulation of source rock[J]. 石油实验地质, 2011, 33(4): 424-427.
[10] Li Yanxia, Zhong Ningning, Lin Juanhua, Long Youkang, Li Jinghong. Accumulation of Upper Cambrian ancient reservoir in Wangcun, southern margin of middle Yangtze region[J]. 石油实验地质, 2011, 33(4): 408-413.
[11] Cheng Qiuquan, Fan Ming, Huang Jiwen, Chen Zhengfu. THE TWO-STAGE FRACTIONATION MODEL OF METHANE CARBON ISOTOPE FROM THE THERMAL SIMULATION EXPERIMENTS OF SOURCE ROCKS IN THE KUQA DEPRESSION OF THE TARIM BASIN[J]. 石油实验地质, 2009, 31(1): 101-104.
[12] Zhang Zhirong, Song Xiaoying, Zhang Qu. GC-MS QUANTITATIVE ANALYSIS OF BIOMARKERS[J]. 石油实验地质, 2008, 30(4): 405-407.
[13] Zheng Lunju, Wang Qiang, Qin Jianzhong, He Sheng. HYDROCARBON-REGENERATION CAPABILITY OF MARINE PALEO-RESERVOIR AND SOLUBLE ORGANIC MATTER[J]. 石油实验地质, 2008, 30(4): 390-395.
[14] Liu Guangxiang. THERMAL SIMULATION OF HEAVY CRUDE OIL FROM WELL S74 IN THE TARIM BASIN (Ⅱ)——HYDROCARBON GENERATING POTENTIAL OF BITUMEN[J]. 石油实验地质, 2008, 30(4): 382-385.
[15] Liu Guangxiang. THERMAL SIMULATION STUDY OF CRUDE OIL FROM WELL S74 IN THE TARIM BASIN(Ⅰ)-GEOCHEMICAL CHARACTERISTICS OF THE SIMULATION PRODUCTS[J]. 石油实验地质, 2008, 30(2): 179-185.