LI Chuxiong, XIAO Qilin, CHEN Qi, JIANG Xingchao. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901
Citation: LI Chuxiong, XIAO Qilin, CHEN Qi, JIANG Xingchao. Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2019, 41(6): 901-909. doi: 10.11781/sysydz201906901

Evolution characteristics and controls of shale nanopores during thermal maturation of organic matter

doi: 10.11781/sysydz201906901
  • Received Date: 2019-07-23
  • Rev Recd Date: 2019-10-09
  • Publish Date: 2019-11-28
  • Organic maturity is one of the main factors controlling the formation and evolution of nanopores in shale. The whole process of hydrocarbon generation was modeled for lacustrine shale in the 2nd member of Nenjiang Formation in the Changling Sag of Songliao Basin by using hydrous pyrolysis experiments in a closed system (Ro=0.61%-4.01%). Shale samples at different thermal evolution stages were solvent extracted. Based on geochemical analysis results of organic carbon content, N2 adsorption and mineral composition, the formation and evolution characteristics and influencing factors of nanopores during thermal maturity of organic matter were systematically studied. The BJH pore volume and BET specific surface area of shale increase greatly after pyrolysis experiments, and the variation ranges are 0.006 73-0.101 61 cm3/g and 0.60-15.75 m2/g, respectively. Thermal degradation of kerogen and cracking of residual hydrocarbons promote the rapid development of nanopores in the mature to high maturity stage, and growth rate of nanopores slows down with weakening of hydrocarbon generation ability of organic matter in the over-mature stage. Liquid hydrocarbon is generated and fills nanopores during peak oil generation, which inhibits the formation of nanopores. Generation and expulsion of oil and gas play a leading role in development of nanopores. Organic nanopores may develop while solid pyrobitumen continuously enriched. Illitization of clay minerals and quartz dissolution are conducive to the development of nanopores.

     

  • loading
  • [1]
    ROUQUEROL J,AVNIR D,FAIRBRIDGE C W,et al.Recommendations for the characterization of porous solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758.
    [2]
    朱汉卿,贾爱林,位云生,等.低温氩气吸附实验在页岩储层微观孔隙结构表征中的应用[J].石油实验地质,2018,40(4):559-565.

    ZHU Hanqing,JIA Ailin,WEI Yunsheng,et al.Microscopic pore structure characteristics of shale reservoir based on low-temperature argon adsorption experiments[J].Petroleum Geo-logy & Experiment,2018,40(4):559-565.
    [3]
    吴松涛,朱如凯,崔京钢,等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发,2015,42(2):167-176.

    WU Songtao,ZHU Rukai,CUI Jinggang,et al.Characteristics of lacustrine shale porosity evolution,Triassic Chang 7 Member,Ordos Basin,NW China[J].Petroleum Exploration and Deve-lopment,2015,42(2):167-176.
    [4]
    LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1071-1098.
    [5]
    熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征[J].断块油气田,2017,24(2):184-189.

    XIONG Jian,LIU Xiangjun,LIANG Lixi.Fractal characteristics of organic rich shale pore in Sichuan Basin, China[J].Fault-Block Oil and Gas Field,2017,24(2):184-189.
    [6]
    MILLIKEN K L,RUDNICKI M,AWWILLER D N,et al.Organic matter-hosted pore system,Marcellus Formation (Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
    [7]
    JARVIE D M,HILL R J,RUBLE T E,et al.Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
    [8]
    KLAVER J,DESBOIS G,LITTKE R,et al.BIB-SEM characterization of pore space morphology and distribution in postmature to overmature samples from the Haynesville and Bossier shales[J].Marine and Petroleum Geology,2015,59:451-466.
    [9]
    邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.

    ZOU Caineng,DONG Dazhong,WANG Shejiao,et al.Geological characteristics,formation mechanism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-653.
    [10]
    王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征[J].断块油气田,2018,25(5):589-592.

    WANG Ruyue,YIN Shuai,GONG Dajian,et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].Fault-Block Oil and Gas Field,2018,25(5):589-592.
    [11]
    李海,刘安,罗胜元,等.鄂西宜昌地区寒武系页岩孔隙结构特征及发育主控因素[J].油气地质与采收率,2018,25(6):16-23.

    LI Hai,LIU An,LUO Shengyuan,et al.Pore structure characte-ristics and development control factors of Cambrian shale in the Yichang area,western Hubei[J].Petroleum Geology and Recovery Efficiency,2018,25(6):16-23.
    [12]
    董春梅,马存飞,栾国强,等.泥页岩热模拟实验及成岩演化模式[J].沉积学报,2015,33(5):1053-1061.

    DONG Chunmei,MA Cunfei,LUAN Guoqiang,et al.Pyrolysis simulation experiment and diagenesis evolution pattern of shale[J].Acta Sedimentologica Sinica,2015,33(5):1053-1061.
    [13]
    薛莲花,杨巍,仲佳爱,等.富有机质页岩生烃阶段孔隙演化:来自鄂尔多斯延长组地质条件约束下的热模拟实验证据[J].地质学报,2015,89(5):970-978.

    XUE Lianhua,YANG Wei,ZHONG Jia'ai,et al.Porous evolution of the organic-rich shale from simulated experiment with geological constraints,samples from Yanchang Formation in Ordos Basin[J].Acta Geologica Sinica,2015,89(5):970-978.
    [14]
    胡海燕.富有机质Woodford页岩孔隙演化的热模拟实验[J].石油学报,2013,34(5):820-825.

    HU Haiyan.Porosity evolution of the organic-rich shale with thermal maturity increasing[J].Acta Petrolei Sinica,2013,34(5):820-825.
    [15]
    崔景伟,朱如凯,崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据[J].地质学报,2013,87(5):730-736.

    CUI Jingwei,ZHU Rukai,CUI Jinggang.Relationship of porous evolution and residual hydrocarbon:evidence from modeling experiment with geological constrains[J].Acta Geologica Sinica,2013,87(5):730-736.
    [16]
    吉利明,吴远东,贺聪,等.富有机质泥页岩高压生烃模拟与孔隙演化特征[J].石油学报,2016,37(2):172-181.

    JI Liming,WU Yuandong,HE Cong,et al.High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J].Acta Petrolei Sinica,2016,37(2):172-181.
    [17]
    马中良,郑伦举,徐旭辉,等.富有机质页岩有机孔隙形成与演化的热模拟实验[J].石油学报,2017,38(1):23-30.

    MA Zhongliang,ZHENG Lunju,XU Xuhui,et al.Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J].Acta Petrolei Sinica,2017,38(1):23-30.
    [18]
    KO L T,LOUCKS R G,ZHANG Tongwei,et al.Pore and pore network evolution of Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks:results from gold tube pyrolysis experiments[J].AAPG Bulletin,2016,100(11):1693-1722.
    [19]
    潘银华,黎茂稳,孙永革,等.江汉盆地潜江凹陷盐间云质页岩热压生排烃模拟实验研究[J].石油实验地质,2018,40(4):551-558.

    PAN Yinhua,LI Maowen,SUN Yongge,et al.Thermo-compression simulation of hydrocarbon generation and expulsion of inter-salt dolomiticshale,Qianjiang Sag,Jianghan Basin[J].Petroleum Geo-logy & Experiment,2018,40(4):551-558.
    [20]
    宋磊,宁正福,孙一丹,等.联合压汞法表征致密油储层孔隙结构[J].石油实验地质,2017,39(5):700-705.

    SONG Lei,NING Zhengfu,SUN Yidan,et al.Pore structure characterization of tight oil reservoirs by a combined mercury method[J].Petroleum Geology & Experiment,2017,39(5):700-705.
    [21]
    彭钰洁,刘鹏,吴佩津.页岩有机质热演化过程中孔隙结构特征研究[J].特种油气藏,2018,25(5):141-145.

    PENGYujie,LIU Peng,WU Peijin.Pore structure characterization of shale organic matter during thermal evolution[J].Special Oil & Gas Reservoirs,2018,25(5):141-145.
    [22]
    李晓骁,任晓娟,罗向荣.低渗透致密砂岩储层孔隙结构对渗吸特征的影响[J].油气地质与采收率,2018,25(4):115-120.

    LI Xiaoxiao,REN Xiaojuan,LUO Xiangrong.Influence of pore structures on the characteristic of spontaneous imbibition in low-permeability tight sandstone reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(4):115-120.
    [23]
    端祥刚,高树生,胡志明,等.页岩微纳米孔隙多尺度渗流理论研究进展[J].特种油气藏,2017,24(5):1-9.

    DUAN Xianggang,GAO Shusheng,HU Zhiming,et al.Research progress in multi-scale percolation theory in shale micro-nano pores[J].Special Oil & Gas Reservoirs,2017,24(5):1-9.
    [24]
    CURTIS M E,CARDOTT B J,SONDERGELD C H,et al.Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103:26-31.
    [25]
    LÖHR S C,BARUCH E T,HALL P A,et al.Is organic pore deve-lopment in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J].Organic Geoche-mistry,2015,87:119-132.
    [26]
    CHEN Ji,XIAO Xianming.Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129:173-181.
    [27]
    SUN Lina,TUO Jincai,ZHANG Mingfeng,et al.Formation and development of the pore structure in Chang 7 member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis[J].Fuel,2015,158:549-557.
    [28]
    GUO Huijuan,JIA Wanglu,PENG Ping'an,et al.Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis:a study of the Yanchang shale with type Ⅱ kerogen[J].Organic Geochemistry,2017,105:56-66.
    [29]
    BARRETT E P,JOYNER L G,HALENDA P P.The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms[J].Journal of the American Chemical Society,1951,73(1):373-380.
    [30]
    BRUNAUER S,EMMETT P H,TELLER E.Adsorption of gases in multimolecular layers[J].Journal of the American Chemical Society,1938,60(2):309-319.
    [31]
    SING K S W.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J].Pure and Applied Chemistry,1985,57(4):603-619.
    [32]
    GROEN J C,PEFFER L A A,PÉREZ-RAMÍREZ J.Pore size determination in modified micro- and mesoporous materials.Pitfalls and limitations in gas adsorption data analysis[J].Microporous and Mesoporous Materials,2003,60(1/3):1-17.
    [33]
    MEYER K,KLOBES P.Comparison between different presentations of pore size distribution in porous materials[J].Fresenius' Journal of Analytical Chemistry,1999,363(2):174-178.
    [34]
    杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.

    YANG Feng,NING Zhengfu,HU Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
    [35]
    TIAN Hui,PAN Lei,XIAO Xianming,et al.A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2,adsorption and FE-SEM methods[J].Marine and Petroleum Geology,2013,48:8-19.
    [36]
    XIONG Yongqiang,JIANG Wenmin,WANG Xiaotao,et al.Formation and evolution of solid bitumen during oil cracking[J].Marine and Petroleum Geology,2016,78:70-75.
    [37]
    李新景,陈更生,陈志勇,等.高过成熟页岩储层演化特征与成因[J].天然气地球科学,2016,27(3):407-416.

    LI Xinjing,CHEN Gengsheng,CHEN Zhiyong,et al.An insight into the mechanism and evolution of shale reservoir characteristics with over-high maturity[J].Natural Gas Geoscience,2016,27(3):407-416.
    [38]
    LOUCKS R G,REED R M.Scanning-electron-microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrocks[J].GCAGS Transactions,2014,64:713.
    [39]
    田夏荷,屈红军,刘新社,等.鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨[J].天然气地球科学,2016,27(11):2005-2012.

    TIAN Xiahe,QU Hongjun,LIU Xinshe,et al.Discussion on quartz dissolution and its mechanisms of the Upper Paleozoic tight gas reservoirs in the eastern Ordos Basin[J].Natural Gas Geoscience,2016,27(11):2005-2012.
    [40]
    SCHLOSSER J,GRATHOFF G H,OSTERTAG-HENNING C,et al.Mineralogical changes in organic-rich Posidonia shale during natural and experimental maturation[J].International Journal of Coal Geology,2016,157:74-83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (628) PDF downloads(125) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return