Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
BORJIGIN Tenger, TAO Cheng, HU Guang, SHEN Baojian, MA Zhongliang, PAN Anyang, WANG Jie, WANG Xianghua, XU Ershe. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325
Citation: BORJIGIN Tenger, TAO Cheng, HU Guang, SHEN Baojian, MA Zhongliang, PAN Anyang, WANG Jie, WANG Xianghua, XU Ershe. Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 325-334. doi: 10.11781/sysydz202003325

Effect of hydrocarbon expulsion efficiency on shale gas formation and enrichment

doi: 10.11781/sysydz202003325
  • Received Date: 2020-01-20
  • Rev Recd Date: 2020-04-30
  • Publish Date: 2020-05-28
  • Shale gas enrichment is not only controlled by sufficient gas source but also by the intensity of later structural transformation.Gas volume is related to source rock quality and hydrocarbon expulsion efficiency, and the amount of shale gas generation depends on remaining hydrocarbon.Based on the identification and statistics of solid bitumen and the analysis of helium and carbon isotopes, the hydrocarbon expulsion efficiency, the in situ gas production of the Upper Ordovician Wufeng and Lower Silurian Longmaxi shales in Jiaoshiba and Pengshui exploration areas and its influence on shale gas enrichment were investigated. The hydrocarbon expulsion efficiency, residual oil volume and in situ gas volume for Jiaoshiba were 23%, 27.67 kg/t and 21.23 m3/t, while those values for Pengshui were 65%, 11.0 kg/t, and 18.99 m3/t, respectively, indicating differential hydrocarbon generation and expulsion related to various influence of the Indosinian Movement.According to the results of 4He isotope dating, Fuling shale gas began to be stored and accumulated at the initial stage (231 Ma) of the oil generation peak period with sufficient gas sources, while the closed system for Pengshui shale gas was formed at the later stage (183 Ma) than the gas generation peak with insufficient gas source. The δ13C2 and δ13C1-δ13C2 for Fuling shale gas were -35.8‰ and 4.8‰, while those values for Pengshui shale gas were -33.0‰ and 3.3‰, respectively.The different δ13C fractionation effects might be attributed to the distinct state of the hydrocarbon generation system. Therefore, the matching of the hydrocarbon generation peak period with the key structural transformation period in the process of hydrocarbon generation and evolution, the hydrocarbon retention amount in the maximum burial period and the structural transformation intensity in the process of uplift and denudation jointly controlled the generation, enrichment and preservation of shale gas.

     

  • loading
  • [1]
    PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part Ⅲ: modelling an open system[J]. Marine and Petroleum Geology, 1995, 12(4): 417-452. doi: 10.1016/0264-8172(95)96904-5
    [2]
    张文正, 杨华, 李剑锋, 等. 论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用: 强生排烃特征及机理分析[J]. 石油勘探与开发, 2006, 33(3): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200603005.htm

    ZHANG Wenzheng, YANG Hua, LI Jianfeng, et al. Leading effect of high-class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation: hydrocarbon generation and expulsion mechanism[J]. Petroleum Exploration and Development, 2006, 33(3): 289-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200603005.htm
    [3]
    秦建中, 腾格尔, 申宝剑, 等. 海相优质烃源岩的超显微有机岩石学特征与岩石学组分分类[J]. 石油实验地质, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671

    QIN Jianzhong, BORJIN Tenger, SHEN Baojian, et al. Ultramicroscopic organic petrology characteristics and component classification of excellent marine source rocks[J]. Petroleum Geology & Experiment, 2015, 37(6): 671-680. doi: 10.11781/sysydz201506671
    [4]
    TISSOT B P, WELTE D H. Petroleum formation and occurrence: a new approach to oil and gas exploration[M]. 2nd ed. Berlin, Heidelberg: Springer-Verlag, 1978: 1-538.
    [5]
    HUNT J M. Petroleum geochemistry and geology[M]. San Francisco: Freeman & Company, W&H, 1979: 1-617.
    [6]
    腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm
    [7]
    郭旭升, 李宇平, 腾格尔, 等. 四川盆地五峰组-龙马溪组深水陆棚相页岩生储机理探讨[J]. 石油勘探与开发, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm

    GUO Xusheng, LI Yuping, BORJIGEN Tenger, et al. Hydrocarbon generation and storage mechanisms of deep-water shelf shales of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Sichuan Basin, China[J]. Petroleum Exploration and Development, 2020, 47(1): 193-201. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001021.htm
    [8]
    JARVIE D M, HILL R J, RUBLE T E, etal. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [9]
    邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02
    [10]
    赵文智, 王兆云, 王红军, 等. 不同赋存态油裂解条件及油裂解型气源灶的正演和反演研究[J]. 中国地质, 2006, 33(5): 952-965. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200605004.htm

    ZHAO Wenzhi, WANG Zhaoyun, WANG Hongjun, et al. Cracking conditions of oils existing in different modes of occurrence and forward and backward inference of gas source rock kitchen of oil cracking type[J]. Geology in China, 2006, 33(5): 952-965. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200605004.htm
    [11]
    张金川, 林腊梅, 李玉喜, 等. 页岩油分类与评价[J]. 地学前缘, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm

    ZHANG Jinchuan, LIN Lamei, LI Yuxi, et al. Classification and evaluation of shale oil[J]. Earth Science Frontiers, 2012, 19(5): 322-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205032.htm
    [12]
    卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm

    LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202018.htm
    [13]
    BEHAR F, KRESSMANN S, RUDKIEWICZ J L, etal. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/3): 173-189.
    [14]
    WAPLES D W. The kinetics of in-reservoir oil destruction and gas formation: constraints from experimental and empirical data, and from thermodynamics[J]. Organic Geochemistry, 2000, 31(6): 553-575. doi: 10.1016/S0146-6380(00)00023-1
    [15]
    ZHAO Wenzhi, WANG Zhaoyun, ZHANG Shuichang, et al. Oilcracking: an important way for highly efficient generation of gas from marine source rock kitchen[J]. Chinese Science Bulletin, 2005, 50(22): 2628-2635. doi: 10.1007/BF03183661
    [16]
    王铜山, 耿安松, 熊永强, 等. 海相原油裂解生气实验产物的物质平衡计算: 一个基于储层固体沥青分析的原油裂解气资源量预测模型[J]. 科学通报, 2007, 52(7): 836-842. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200707020.htm

    WANG Tongshan, GENG Ansong, XIONG Yongqiang, et al. Mass balance calculation of the pyrolysates generated from marine crude oil: a prediction model of oil cracking gas resources based on solid bitumen in reservoir[J]. Chinese Science Bulletin, 2007, 52(11): 1532-1539. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200707020.htm
    [17]
    秦建中, 付小东, 申宝剑, 等. 四川盆地上二叠统海相优质页岩超显微有机岩石学特征研究[J]. 石油实验地质, 2010, 32(2): 164-170. doi: 10.11781/sysydz201002164

    QIN Jianzhong, FU Xiaodong, SHEN Baojian, et al. Characteristics of ultramicroscopic organic lithology of excellent marine shale in the Upper Permian sequence, Sichuan Basin[J]. Petroleum Geology & Experiment, 2010, 32(2): 164-170. doi: 10.11781/sysydz201002164
    [18]
    陶成, 杨华敏, 刘文汇. 同位素质谱法测定天然气中He含量及其同位素组成[J]. 质谱学报, 2014, 35(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201402007.htm

    TAO Cheng, YANG Huamin, LIU Wenhui. Analysis of helium abundance and isotope composition in natural gas by isotopic mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2014, 35(2): 138-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201402007.htm
    [19]
    陶成, 刘文汇, 杨华敏, 等. 天然气中稀有气体浓度与同位素比值联测技术及应用[J]. 质谱学报, 2018, 39(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201802009.htm

    TAO Cheng, LIU Wenhui, YANG Huamin, et al. Analysis of concentration and isotope ratio of noble gases in natural gas[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201802009.htm
    [20]
    WANG Ye, QIU Nansheng, BORJIGIN Tenger, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465.
    [21]
    ZHANG Wentao, HU Wenxuan, BORJIGIN Tenger, et al. Pore characteristics of different organic matter in black shale: a case study of the Wufeng-Longmaxi Formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43.
    [22]
    陶成, 刘文汇, 腾格尔, 等. 天然气藏He的累积模式及定年应用初探[J]. 地质学报, 2015, 89(7): 1302-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507012.htm

    TAO Cheng, LIU Wenhui, TENGER, et al. Helium accumulation mode in natural gas reservoirs and its application in dating[J]. Acta Geologica Sinica, 2015, 89(7): 1302-1307. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507012.htm
    [23]
    CRAIG H, LUPTON J E. Primordialneon, helium, and hydrogen in oceanic basalts[J]. Earth and Planetary Science Letters, 1976, 31(3): 369-385.
    [24]
    BALLENTINE C J, MAZUREK M, GAUTSCHI A. Thermal constraints on crustal rare gas release and migration: evidence from Alpine fluid inclusions[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4333-4348.
    [25]
    ZHOU Zheng, BALLENTINE C J. 4He dating of groundwater associated with hydrocarbon reservoirs[J]. Chemical Geology, 2006, 226(3/4): 309-327.
    [26]
    席斌斌, 腾格尔, 俞凌杰, 等. 川东南页岩气储层脉体中包裹体古压力特征及其地质意义[J]. 石油实验地质, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473

    XI Binbin, TENGER, YU Linjie, et al. Trapping pressure of fluid inclusions and its significance in shale gas reservoirs, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 473-479. doi: 10.11781/sysydz201604473
    [27]
    杨振恒, 魏志红, 何文斌, 等. 川东南地区五峰组-龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701017.htm

    YANG Zhenheng, WEI Zhihong, HE Wenbin, et al. Characteristics and significance of onsite gas desorption from Wufeng-Longmaxi shales in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(1): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701017.htm
    [28]
    高玉巧, 高和群, 何希鹏, 等. 四川盆地东南部页岩气同位素分馏特征及对产能的指示意义[J]. 石油实验地质, 2019, 41(6): 865-870. doi: 10.11781/sysydz201906865

    GAO Yuqiao, GAO Hequn, HE Xipeng, et al. Methane isotope fractionation characteristics of shale gas and its significance as a productivity indicator[J]. Petroleum Geology & Experiment, 2019, 41(6): 865-870. doi: 10.11781/sysydz201906865
    [29]
    付小东, 秦建中, 姚根顺, 等. 两种温压体系下烃源岩生烃演化特征对比及其深层油气地质意义[J]. 地球化学, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htm

    FU Xiaodong, QIN Jianzhong, YAO Genshun, et al. The comparison of hydrocarbon generation and evolution characteristics between two temperature-pressure simulation systems and its geological significance for deep reservoir exploration[J]. Geochimica, 2017, 46(3): 262-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201703006.htm
    [30]
    秦建中, 申宝剑, 腾格尔, 等. 不同类型优质烃源岩生排油气模式[J]. 石油实验地质, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179

    QIN Jianzhong, SHEN Baojian, TENGER, et al. Hydrocarbon generation and expulsion pattern of different types of excellent source rocks[J]. Petroleum Geology & Experiment, 2013, 35(2): 179-186. doi: 10.11781/sysydz201302179
    [31]
    梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm

    MEI Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section[J]. Earth Science(Journal of China University of Geosciences), 2010, 35(2): 161-174. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201002000.htm
    [32]
    张培先. 黔中隆起及邻区下寒武统页岩气成藏特殊性分析[J]. 石油实验地质, 2017, 39(2): 162-168. doi: 10.11781/sysydz201702162

    ZHANG Peixian. Peculiar accumulation conditions for shale gas in the Lower Cambrian in Qianzhong Uplift and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 162-168. doi: 10.11781/sysydz201702162
    [33]
    顾志翔, 何幼斌, 彭勇民, 等. 川南-黔中地区下寒武统页岩气富集条件探讨[J]. 天然气地球科学, 2017, 28(4): 642-653. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704020.htm

    GU Zhixiang, HE Youbin, PENG Yongmin, et al. Shale gas accumulation conditions of the Lower Cambrian in southern Sichuan-central Guizhou, China[J]. Natural Gas Geoscience, 2017, 28(4): 642-653. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201704020.htm
    [34]
    韩世庆, 王守德, 胡惟元. 黔东麻江古油藏的发现及其地质意义[J]. 石油与天然气地质, 1982, 3(4): 316-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198204012.htm

    HAN Shiqing, WANG Shoude, HU Weiyuan. The discovery of a paleopool in Majiang and its geological significance[J]. Oil & Gas Geology, 1982, 3(4): 316-326. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198204012.htm
    [35]
    张渠, 腾格尔, 张志荣, 等. 凯里-麻江地区油苗与固体沥青的油源分析[J]. 地质学报, 2007, 81(8): 1118-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708011.htm

    ZHANG Qu, TENGER, ZHANG Zhirong, et al. Oil source of oil seepage and solid bitumen in the Kaili-Majiang area[J]. Acta Geologica Sinica, 2007, 81(8): 1118-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200708011.htm
    [36]
    腾格尔, 秦建中, 郑伦举. 黔南坳陷海相优质烃源岩的生烃潜力及时空分布[J]. 地质学报, 2008, 82(3): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803011.htm

    TENGER, QIN Jianzhong, ZHENG Lunju. Hydrocarbon potential on excellent hydrocarbon source rock in Southern Guizhou Depression and its spacial-temporal distribution[J]. Acta Geologica Sinica, 2008, 82(3): 366-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200803011.htm
    [37]
    王同, 熊亮, 徐猛, 等. 川南地区下寒武统筇竹寺组页岩储层特征[J]. 石油实验地质, 2016, 38(2): 197-203. doi: 10.11781/sysydz201602197

    WANG Tong, XIONG Liang, XU Meng, et al. Shale reservoir characteristics of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(2): 197-203. doi: 10.11781/sysydz201602197
    [38]
    熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201909009.htm

    XIONG Liang. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201909009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (961) PDF downloads(474) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return