Volume 42 Issue 3
May  2020
Turn off MathJax
Article Contents
YANG Yunfeng, BAO Fang, BORJIGIN Tenger, Pan Anyang, SHEN Baojian. Characteristics of organic matter-hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387
Citation: YANG Yunfeng, BAO Fang, BORJIGIN Tenger, Pan Anyang, SHEN Baojian. Characteristics of organic matter-hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387

Characteristics of organic matter-hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin

doi: 10.11781/sysydz202003387
  • Received Date: 2020-01-03
  • Rev Recd Date: 2020-04-12
  • Publish Date: 2020-05-28
  • Organic matter-hosted pores provide reservoir space and migration pathways for shale gas. The evolution of organic matter-hosted pores (OM pores) of different macerals from Longmaxi shale with a wide variety of thermal maturities has been investigated using field emission scanning electron microscopy (FE-SEM). The Longmaxi shale contains rare graptolites which are the main component of structured organic matter. No OM pores occur in graptolite fragments, irrespective of thermal maturity. OM pores locally developed in graptolite fragments are formed from hydrocarbon generation of organic matter which was replaced by macromolecular material from surrounding sediment or in situ polymerized by lipids from the organism itself. Solid bitumen is not only the major organic component in the Longmaxi shale, but also the main host of OM pore development. The diagenesis of fine-grained sediments and thermal evolution of organic matter have been combined with the morphology of solid bitumen to distinguish pre-oil solid bitumen and post-oil solid bitumen. The post-oil solid bitumen is dominant. The evolution of OM pores within solid bitumen is closely related to thermal maturity. Generally, OM pores within solid bitumen become greater as thermal maturity increases. During the mature to early postmature (GRo < 2.3%) stages, OM pores within solid bitumen are not well developed probably due to the masking by oil and bitumen generated from organic matter. OM pores within solid bitumen are well developed during the late postmature to early overmature (2.3% < GRo < 4.5%) stages, with two main types being spongy and bubble-shaped. For organic-rich Longmaxi shale, the contribution of OM porosity to total porosity is more than 50%. During the late overmature (GRo>4.5%) stage, organic matter carbonization will cause intense damage to shale pores so that the exploration risk of shale gas increases.

     

  • loading
  • [1]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
    [2]
    MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048
    [3]
    MILLIKEN K L, ESCH W L, REED R M, et al. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett shale (Mississippian), Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(8): 1553-1578. doi: 10.1306/12011111129
    [4]
    LÖHR S C, BARUCH E T, HALL P A, et al. Is organic pore deve-lopment in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132. doi: 10.1016/j.orggeochem.2015.07.010
    [5]
    JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. doi: 10.1306/12190606068
    [6]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098. doi: 10.1306/08171111061
    [7]
    CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
    [8]
    BERNARD S, HORSFIELD B, SCHULZ H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 70-89. doi: 10.1016/j.marpetgeo.2011.05.010
    [9]
    CHEN Ji, XIAO Xianming. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181. doi: 10.1016/j.fuel.2014.03.058
    [10]
    CARDOTT B J, LANDIS C R, CURTIS M E. Post-oil solid bitumen network in the Woodford shale, USA: a potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139: 106-113. doi: 10.1016/j.coal.2014.08.012
    [11]
    王飞宇, 关晶, 冯伟平, 等. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发, 2013, 40(6): 764-768. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306020.htm

    WANG Feiyu, GUAN Jing, FENG Weiping, et al. Evolution of over mature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201306020.htm
    [12]
    TIAN Hui, PAN Lei, XIAO Xianming, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19. doi: 10.1016/j.marpetgeo.2013.07.008
    [13]
    HU Haiyan, HAO Fang, LIN Junfeng, et al. Organic matter-hosted pore system in the Wufeng-Longmaxi (O3w-S1l) shale, Jiaoshiba area, Eastern Sichuan Basin, China[J]. International Journal of Coal Geology, 2017, 173: 40-50. doi: 10.1016/j.coal.2017.02.004
    [14]
    JULIAO T, SUÁREZ-RUIZ I, MARQUEZ R, et al. The role of solid bitumen in the development of porosity in shale oil reservoir rocks of the Upper Cretaceous in Colombia[J]. International Journal of Coal Geology, 2015, 147-148: 126-144. doi: 10.1016/j.coal.2015.07.001
    [15]
    SCHIEBER J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: the petrographic context of multiple pore types[M]//CAMP W K, DIAZ E, WAWAK B. Electron microscopy of shale hydrocarbon reservoirs. [s. l. ]: AAPG, 2013: 153-171.
    [16]
    LIU Bei, SCHIEBER J, MASTALERZ M. Combined SEM and reflected light petrography of organic matter in the New Albany shale (Devonian-Mississippian) in the Illinois Basin: a perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 2017, 184: 57-72. doi: 10.1016/j.coal.2017.11.002
    [17]
    LI Yifan, SCHIEBER J, FAN Tailiang, et al. Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou, South China: the controls of shale facies on pore distribution[J]. Marine and Petroleum Geology, 2018, 92: 697-718. doi: 10.1016/j.marpetgeo.2017.12.001
    [18]
    REED R M, LOUCKS R G, RUPPEL S C. Comment on "Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)" by BERNARD et al. (2012)[J]. International Journal of Coal Geology, 2014, 127: 111-113. doi: 10.1016/j.coal.2013.11.012
    [19]
    FISHMAN N S, HACKLEY P C, LOWERS H A, et al. The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom[J]. International Journal of Coal Geology, 2012, 103: 32-50. doi: 10.1016/j.coal.2012.07.012
    [20]
    WEI Lin, MASTALERZ M, SCHIMMELMANN A, et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales[J]. International Journal of Coal Geology, 2014, 132: 38-50. doi: 10.1016/j.coal.2014.08.003
    [21]
    QI Yu, JU Yiwen, CAI Jianchao, et al. The effects of solvent extraction on nanoporosity of marine-continental coal and mudstone[J]. Fuel, 2019, 235: 72-84. doi: 10.1016/j.fuel.2018.07.083
    [22]
    CANDER H. Sweet spots in shale gas and liquids plays: prediction of fluid composition and reservoir pressure[C]//AAPG Annual Convention and Exhibition, April 22-25, 2012. Long Beach, CA, USA, 2012.
    [23]
    XIAO Xianming, WEI Qiang, Gai Haifeng, et al. Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in South China[J]. Petroleum Science, 2015, 12(4): 573-586. doi: 10.1007/s12182-015-0057-2
    [24]
    牟传龙, 王秀平, 王启宇, 等. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系[J]. 古地理学报, 2016, 18(3): 457-472. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603012.htm

    MOU Chuanlong, WANG Xiuping, WANG Qiyu, et al. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeo-graphy, 2016, 18(3): 457-472. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603012.htm
    [25]
    BERTRAND R, HÉROUX Y. Chitinozoan, graptolite, and scoleco-dont reflectance as an alternative to vitrinite and pyrobitumen reflectance in Ordovician and Silurian strata, Anticosti Island, Quebec, Canada[J]. AAPG Bulletin, 1987, 71(8): 951-957.
    [26]
    CURIALE J A. Origin of solid bitumens, with emphasis on biological marker results[J]. Organic Geochemistry, 1986, 10(1/3): 559-580.
    [27]
    GAO Jian, HE Sheng, ZHAO Jianxin, et al. Geothermometry and geobarometry of overpressured Lower Paleozoic gas shales in the Jiaoshiba field, Central China: insight from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2017, 83: 124-139. doi: 10.1016/j.marpetgeo.2017.02.018
    [28]
    XIONG Yongqiang, JIANG Wenmin, WANG Xiaotao, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine and Petroleum Geology, 2016, 78: 70-75. doi: 10.1016/j.marpetgeo.2016.09.008
    [29]
    MASTALERZ M, DROBNIAK A, STANKIEWICZ A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: a review[J]. International Journal of Coal Geology, 2018, 195: 14-36. doi: 10.1016/j.coal.2018.05.013
    [30]
    ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi shale in the Sichuan Basin, China: implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674. doi: 10.1016/j.marpetgeo.2017.06.031
    [31]
    BEHAR F, VANDENBROUCKE M, TANG Yongchun, et al. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J]. Organic Geochemistry, 1997, 26(5/6): 321-339.
    [32]
    仰云峰. 川东南志留系龙马溪组页岩沥青反射率和笔石反射率的应用[J]. 石油实验地质, 2016, 38(4): 466-472. doi: 10.11781/sysydz201604466

    YANG Yunfeng. Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 466-472. doi: 10.11781/sysydz201604466
    [33]
    GOODARZI F, FOWLER M G, BUSTIN M, et al. Thermal maturity of Early Paleozoic sediments as determined by the optical properties of marine-derived organic matter: a review[C]//SCHIDLOWSKI M, GOLUBIC S, KIMBERLEY M M, et al. Early organic evolution. Berlin, Heidelberg: Springer, 1992: 279-295.
    [34]
    戴娜, 钟宁宁, 张瑜, 等. 氩离子抛光/扫描电镜分析方法在笔石有机质研究中的应用[J]. 电子显微学报, 2015, 34(5): 416-420. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201505011.htm

    DAI Na, ZHONG Ningning, ZHANG Yu, et al. Ar ion milling/SEM analysis on graptolitinite macerals[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 416-420. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201505011.htm
    [35]
    BRIGGS D E G, KEAR A J, BAAS M, et al. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites[J]. Lethaia, 1995, 28(1): 15-23. doi: 10.1111/j.1502-3931.1995.tb01589.x
    [36]
    CROWTHER P R. The fine structure of graptolite periderm[M]. London: The Palaeontological Association, 1981.
    [37]
    GUPTA N S, BRIGGS D E G, PANCOST R D. Molecular taphonomy of graptolites[J]. Journal of the Geological Society, 2006, 163(6): 897-900. doi: 10.1144/0016-76492006-070
    [38]
    申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰-龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480

    SHEN Baojian, YANG Yunfeng, TENGER, et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
    [39]
    卢龙飞, 秦建中, 申宝剑, 等. 中上扬子地区五峰组-龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm

    LU Longfei, QIN Jianzhong, SHEN Baojian, et al. The origin of biogenic silica in siliceous shale from Wufeng-Longmaxi formation in the Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201804022.htm
    [40]
    SCHIEBER J, KRINSLEY D, RICIPUTI L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985. doi: 10.1038/35023143
    [41]
    DAY-STIRRAT R J, DUTTON S P, MILLIKEN K L, et al. Fabric anisotropy induced by primary depositional variations in the silt: clay ratio in two fine-grained slope fan complexes: Texas Gulf Coast and northern North Sea[J]. Sedimentary Geology, 2010, 226(1/4): 42-53.
    [42]
    SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132
    [43]
    KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190: 3-28. doi: 10.1016/j.coal.2017.10.001
    [44]
    JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micron-to nano-pore characteristics in the shale of Longmaxi Formation, southeast Sichuan Basin[J]. Petroleum Research, 2017, 2(2): 156-168. doi: 10.1016/j.ptlrs.2017.07.003
    [45]
    郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm

    GUO Tonglou, ZHANG Hanrong. Formation and enrichment mode of Jiaoshiba Shale Gas Field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm
    [46]
    李金磊, 尹成, 王明飞, 等. 四川盆地涪陵焦石坝地区保存条件差异性分析[J]. 石油实验地质, 2019, 41(3): 341-347. doi: 10.11781/sysydz201903341

    LI Jinlei, YIN Cheng, WANG Mingfei, et al. Preservation condition differences in Jiaoshiba area, Fuling, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019, 41(3): 341-347. doi: 10.11781/sysydz201903341
    [47]
    易积正, 王超. 四川盆地焦石坝地区龙马溪组海相页岩储层非均质性特征[J]. 石油实验地质, 2018, 40(1): 13-19. doi: 10.11781/sysydz201801013

    YI Jizheng, WANG Chao. Differential pore development characteristics in various shale lithofacies of Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(1): 13-19. doi: 10.11781/sysydz201801013
    [48]
    刘鹏, 吴佩津, 彭钰洁. 焦石坝地区构造特征及页岩气保存模式研究[J]. 特种油气藏, 2018, 25(2): 37-41. doi: 10.3969/j.issn.1006-6535.2018.02.007

    LIU Peng, WU Peijin, PENG Yujie. Structure characterization and shale gas preservation pattern in Jiaoshiba[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 37-41. doi: 10.3969/j.issn.1006-6535.2018.02.007
    [49]
    王玉满, 李新景, 陈波, 等. 海相页岩有机质炭化的热成熟度下限及勘探风险[J]. 石油勘探与开发, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm

    WANG Yuman, LI Xinjing, CHEN Bo, et al. Lower limit of thermal maturity for the carbonization of organic matter in marine shale and its exploration risk[J]. Petroleum Exploration and Development, 2018, 45(3): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (693) PDF downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return