Volume 42 Issue 4
Jul.  2020
Turn off MathJax
Article Contents
LIU Bo, LIU Yang, LIU Yan, HE Junling, GAO Yifei, WANG Haoli, FAN Jing, FU Xiaofei. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533
Citation: LIU Bo, LIU Yang, LIU Yan, HE Junling, GAO Yifei, WANG Haoli, FAN Jing, FU Xiaofei. Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(4): 533-544. doi: 10.11781/sysydz202004533

Prediction of low-maturity shale oil produced by in situ conversion: a case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China

doi: 10.11781/sysydz202004533
  • Received Date: 2020-03-27
  • Rev Recd Date: 2020-06-14
  • Publish Date: 2020-07-28
  • The Nenjiang Formation in the Centrel Depression of the Songliao Basin consists of organic-rich low-maturity shale with a wide distribution and large thickness. In this study, the spatial heterogeneity of organic matter (OM) abundance and types was studied based on core measurements and log data. A geological model was used to predict the potential of in situ electric heating using hydrocarbon generation kinetics and heat conduction models. All members of the Nenjiang Formation are in the immature to low-maturity stage and oil-prone. The first and second members of the Nenjiang Formation (K2n1+2) contain mainly types Ⅱ1 and Ⅱ2 kerogen with alginite the dominant maceral. The shale of K2n1 has the best generation quality, and the high-quality source rocks within this member are mainly distributed in the Xinbei-Daan area of the Changling Sag. It can be inferred from the in situ electric heating simulation that the temperature rises rapidly, and reaches above 600 ℃ after 4 years of heating at 2 kW heating power. At 1 kW of heating power, it would take about 8 years. As the organic matter conversion rate approached 100% by the fifth year of heating, the maximum resource abundance was achieved. At the 2 kW heating power, the resource of the K2n1 reaches 24.5×109 t at the end of the fifth year, and 6.6×109 t of the K2n2.

     

  • loading
  • [1]
    余涛, 卢双舫, 李俊乾, 等. 东营凹陷页岩油游离资源有利区预测[J]. 断块油气田, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm

    YU Tao, LU Shuangfang, LI Junqian, et al. Prediction for favorable area of shale oil free resources in Dongying Sag[J]. Fault-Block Oil and Gas Field, 2018, 25(1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201801004.htm
    [2]
    高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133

    GAO Hui, HE Mengqing, ZHAO Pengyun, et al. Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology & Experiment, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133
    [3]
    包友书. 渤海湾盆地东营凹陷古近系页岩油主要赋存空间探索[J]. 石油实验地质, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479

    BAO Youshu. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin[J]. Petroleum Geo-logy & Experiment, 2018, 40(4): 479-484. doi: 10.11781/sysydz201804479
    [4]
    蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849

    JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geochemical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849
    [5]
    邹才能, 丁云宏, 卢拥军, 等. "人工油气藏"理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm

    ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, techno-logy and practice of "man-made reservoirs" development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm
    [6]
    邹才能, 潘松圻, 荆振华, 等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm

    ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
    [7]
    马建雄, 薛林福, 赵金岷, 等. 油页岩原位裂解开采温度场数值模拟与设计方案优化[J]. 科学技术与工程, 2019, 19(5): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905014.htm

    MA Jianxiong, XUE Linfu, ZHAO Jinmin, et al. Numerical simulation and design optimization of temperature field of oil shale in situ pyrolysis and exploitation[J]. Science Technology and Engineering, 2019, 19(5): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905014.htm
    [8]
    ALEKSANDROV J, PURGA J. Viru Keemia Grupp opened a new oil shale processing plant in Estonia[J]. Oil shale, 2010, 27(1): 84-88.
    [9]
    刘招君, 杨虎林, 董清水, 等. 中国油页岩[M]. 北京: 石油工业出版社, 2009.

    LIU Zhaojun, YANG Hulin, DONG Qingshui, et al. Oil shale in China[M]. Beijing: Petroleum Industry Press, 2009.
    [10]
    王乐. 油页岩原位电加热开采过程温度传递规律的试验研究与数值模拟[D]. 长春: 吉利大学, 2014.

    WANG Le. Experiment and simulation on temperature field during oil shale pyrolysis by electric-heating[D]. Changchun: Jilin University, 2014.
    [11]
    杨雪, 柳波, 张金川, 等. 古龙凹陷青一段米兰科维奇旋回识别及其沉积响应[J]. 沉积学报, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm

    YANG Xue, LIU Bo, ZHANG Jinchuan, et al. Identification of sedimentary responses to the Milankovitch cycles in the K2qn1 Formation, Gulong Depression[J]. Acta Sedimentologica Sinica, 2019, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm
    [12]
    白龙辉, 柳波, 迟亚奥, 等. 二维核磁共振技术表征页岩有机质特征的应用: 以松辽盆地南部青山口组富有机质页岩为例[J/OL]. 石油与天然气地质: 1-12[2019-11-14]. http://kns.cnki.net/kcms/detail/11.4820.TE.20191114.1539.002.html.

    BAI Longhui, LIU Bo, CHI Yaao, et al. Application of 2-D NMR technique to characterize organic matter in shale deposit: a case study from the Qingshankou Formation in southern Songliao Basin[J/OL]. Oil & Gas Geology: 1-12[2019-11-14]. http://kns.cnki.net/kcms/detail/11.4820.TE.20191114.1539.002.html.
    [13]
    王璞珺, 杜小弟, 王俊, 等. 松辽盆地白垩纪年代地层研究及地层时代划分[J]. 地质学报, 1995, 69(4): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199504007.htm

    WANG Pujun, DU Xiaodi, WANG Jun, et al. The chronostrati-graphy and stratigraphic classification of the Cretaceous of the Songliao Basin[J]. Acta Geologica Sinica, 1995, 69(4): 372-381. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199504007.htm
    [14]
    边雷博, 柳广弟, 孙明亮, 等. 优化的ΔlogR技术及其在中—深层烃源岩总有机碳含量预测中的应用[J]. 油气地质与采收率, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm

    BIAN Leibo, LIU Guangdi, SUN Mingliang, et al. Improved ΔlogR technique and its application to predicting total organic carbon of source rocks with middle and deep burial depth[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201804007.htm
    [15]
    刘岩, 杨池银, 肖敦清, 等. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析: 以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705005.htm

    LIU Yan, YANG Chiyin, XIAO Dunqing, et al. Hydrocarbon phase limit and conversion process in the deep formation of rift lacustrine basin from Qikou Sag of Bohai Bay Basin, Eastern China[J]. Natural Gas Geoscience, 2017, 28(5): 703-712. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201705005.htm
    [16]
    柳波, 郭小波, 黄志龙, 等. 页岩油资源潜力预测方法探讨: 以三塘湖盆地马朗凹陷芦草沟组页岩油为例[J]. 中南大学学报(自然科学版), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htm

    LIU Bo, GUO Xiaobo, HUANG Zhilong, et al. Discussion on prediction method for hydrocarbon resource potential of shale oil: taking Lucaogou Formation shale oil of Malang Sag as case[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1472-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201304027.htm
    [17]
    LIU Bo, WANG Haoli, FU Xiaofei, et al. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, northern Songliao Basin, Northeast China[J]. AAPG Bulletin, 2019, 103(2): 405-432.
    [18]
    祝效华, 余志详. ANSYS高级工程有限元分析范例精选[M]. 北京: 电子工业出版社, 2004.

    ZHU Xiaohua, YU Zhixiang. Examples of ANSYS advanced engineering finite element analysis[M]. Beijing: Electronic Industry Press, 2004.
    [19]
    朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国电力出版社, 1999.

    ZHU Bofang. Thermal stresses and temperature control of mass concrete[M]. 2nd ed. Beijing: China Electric Power Press, 1999.
    [20]
    盛金昌. 多孔介质流—固—热三场全耦合数学模型及数值模拟[J]. 岩石力学与工程学报, 2006, 25(S1): 3028-3033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1065.htm

    SHENG Jinchang. Fully coupled thermo-hydro-mechanical model of saturated porous media and numerical modelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 3028-3033. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1065.htm
    [21]
    杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.

    YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
    [22]
    康志勤, 吕兆兴, 杨栋, 等. 油页岩原位注蒸汽开发的固—流—热—化学耦合数学模型研究[J]. 西安石油大学学报(自然科学版), 2008, 23(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200804009.htm

    KANG Zhiqin, LV Zhaoxing, YANG Dong, et al. The solid-fluid-thermal-chemistry coupling mathematical model for oil shale in-situ steam injecting development[J]. Journal of Xi'an Shiyou University (Nature Science Edition), 2008, 23(4): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200804009.htm
    [23]
    王健. 油页岩原位开采温度场的数值模拟[D]. 长春: 吉林大学, 2011.

    WANG Jian. Numerical simulation of temperature field for the in-situ upgrading of oil shale[D]. Changchun: Jilin University, 2011.
    [24]
    刘洋, 何坤, 李贤庆, 等. 湖相烃源岩生烃动力学及排油效率: 以松辽盆地青山口组为例[J]. 现代地质, 2016, 30(3): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201603013.htm

    LIU Yang, HE Kun, LI Xianqing, et al. Hydrocarbon generation kinetics and the efficiency of petroleum expulsion of lacustrine source rocks: taking the Qingshankou Formation in the Songliao Basin as an example[J]. Geoscience, 2016, 30(3): 627-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201603013.htm
    [25]
    程志强, 王飞宇, 师玉雷, 等. 二连盆地乌里雅斯太凹陷南洼烃源岩有机相与生烃特征[J]. 天然气地球科学, 2018, 29(5): 696-707. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805011.htm

    CHENG Zhiqiang, WANG Feiyu, SHI Yulei, et al. Organic facies and hydrocarbon characteristics of source rock in south trough of Wuliyasitai Sag, Erlian Basin[J]. Natural Gas Geoscience, 2018, 29(5): 696-707. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805011.htm
    [26]
    PEPPER A S, CORVI P J. Simple kinetic models of petroleum formation. Part Ⅰ: oil and gas generation from kerogen[J]. Marine and Petroleum Geology, 1995, 12(3): 291-319.
    [27]
    申宝剑, 秦建中, 冯丹, 等. 烃源岩有机碳含量与生排油效率动态评价[J]. 石油实验地质, 2017, 39(4): 505-510. doi: 10.11781/sysydz201704505

    SHEN Baojian, QIN Jianzhong, FEND Dan, et al. Dynamic assessment of organic carbon content and hydrocarbon generation and expulsion efficiency in source rocks[J]. Petroleum Geology & Experiment, 2017, 39(4): 505-510. doi: 10.11781/sysydz201704505
    [28]
    康洪全, 逄林安, 贾怀存, 等. 澳大利亚西北陆架北卡那封盆地资源潜力评价[J]. 石油实验地质, 2018, 40(6): 808-817. doi: 10.11781/sysydz201806808

    KANG Hongquan, PENG Lin'an, JIA Huaicun, et al. Resource assessment of North Carnarvon Basin on the northwest shelf of Australia[J]. Petroleum Geology & Experiment, 2018, 40(6): 808-817. doi: 10.11781/sysydz201806808
    [29]
    柳波, 何佳, 吕延防, 等. 页岩油资源评价指标与方法: 以松辽盆地北部青山口组页岩油为例[J]. 中南大学学报(自然科学版), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm

    LIU Bo, HE Jia, LV Yanfang, et al. Parameters and method for shale oil assessment: taking Qinshankou Formation shale oil of northern Songliao Basin[J]. Journal of Central South University (Science and Technology), 2014, 45(11): 3846-3852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201411019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (752) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return