留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层页岩含气量评价及其差异变化——以四川盆地威荣、永川页岩气田为例

苏海琨 聂海宽 郭少斌 杨振恒 李东晖 孙川翔 卢婷 刘秘

苏海琨, 聂海宽, 郭少斌, 杨振恒, 李东晖, 孙川翔, 卢婷, 刘秘. 深层页岩含气量评价及其差异变化——以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
引用本文: 苏海琨, 聂海宽, 郭少斌, 杨振恒, 李东晖, 孙川翔, 卢婷, 刘秘. 深层页岩含气量评价及其差异变化——以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
SU Haikun, NIE Haikuan, GUO Shaobin, YANG Zhenheng, LI Donghui, SUN Chuanxiang, LU Ting, LIU Mi. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
Citation: SU Haikun, NIE Haikuan, GUO Shaobin, YANG Zhenheng, LI Donghui, SUN Chuanxiang, LU Ting, LIU Mi. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815

深层页岩含气量评价及其差异变化——以四川盆地威荣、永川页岩气田为例

doi: 10.11781/sysydz202205815
基金项目: 

国家自然科学基金项目 41872124

国家自然科学基金项目 42130803

中国石化股份公司科研项目 P20046-1

详细信息
    作者简介:

    苏海琨(1997-), 男, 硕士研究生, 从事非常规油气地质研究。E-mail: shk970306@163.com

    通讯作者:

    聂海宽(1982-), 男, 博士, 研究员, 从事非常规油气地质研究。E-mail: niehk.syky@sinopec.com

  • 中图分类号: TE122.35

Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin

  • 摘要: 近年来我国页岩气勘探开发逐渐走向深层,但对高温高压条件下页岩吸附特征、游离气的赋存特征还不清楚,制约了深层页岩气大规模开发。以四川盆地威荣、永川地区深层页岩为研究对象,对不同有机碳含量和孔隙度的样品开展了高温高压(135 ℃、80 MPa)等温吸附实验和孔隙度实验,计算了页岩吸附气量、游离气量和总含气量的理论值,并与实际值进行对比。研究表明:①页岩吸附气含量随着压力增大逐渐增加,当压力大于40 MPa后,吸附气量增加趋于平缓,最大可达4.46 cm3/g。②页岩理论含气量随着地层压力的增加而增加,当地层压力达到80 MPa时总含气量达到最大,此时理论最大值为11.3 cm3/g;计算的游离气含量为6.8 cm3/g,吸附气含量为4.5 cm3/g,分别约占总含气量的60%和40%;游离气/吸附气比例随深度增加逐渐增加。③基于现场解吸实验,实测威页11-1井总含气量最大值为5.95 cm3/g,最小值为3.29 cm3/g,平均为4.52 cm3/g,对比理论含气量10.3 cm3/g,表明有近50%的气体在抬升过程中散失,同时一定程度上也说明了深层页岩气保存条件的复杂性,建议加强对保存条件的研究。

     

  • 图  1  容积法等温吸附实验仪器(a-b)及原理图(c)

    Figure  1.  Experiment instrument(a-b) and schematic diagram(c) of isothermal adsorption with volumetric method

    图  2  孔隙度实验装置

    Figure  2.  Porosity test device

    图  3  四川盆地威荣、永川地区龙马溪组深层页岩等温吸附曲线(135 ℃, 0~80 MPa)

    Figure  3.  Isothermal adsorption curves of deep shale of Longmaxi Formation in Weirong and Yongchuan regions, Sichuan Basin (135 ℃, 0-80 MPa)

    图  4  四川盆地威荣、永川地区龙马溪组深层页岩孔隙度变化(10~70 MPa, 60~120 ℃)

    Figure  4.  Porosity changes of deep shale in Longmaxi Formation in Weirong and Yongchuan regions, Sichuan Basin (10-70 MPa, 60-120 ℃)

    图  5  四川盆地威荣、永川地区WY23-1井和YY2井龙马溪组页岩游离气含量(135 ℃,0~80 MPa)

    Figure  5.  Shale free gas content in Longmaxi Formation, wells WY23-1 and YY2 in Weirong and Yongchuan regions, Sichuan Basin (135 ℃, 0-80 MPa)

    图  6  四川盆地威荣、永川地区龙马溪组页岩含气量图版(135 ℃, 0~80 MPa)

    Figure  6.  Shale gas content of Longmaxi Formation in Weirong and Yongchuan regions, Sichuan Basin (135 ℃, 0-80 MPa)

    图  7  四川盆地威荣地区WY11-1井实际含气量

    Figure  7.  Actual gas content of well WY11-1, Weirong region, Sichuan Basin

    表  1  四川盆地威荣、永川地区页岩样品信息

    Table  1.   Information of shale samples in Weirong and Yongchuan regions, Sichuan Basin

    岩样编号 井号 深度/m 目数 ω(TOC)/% 实验温度/℃ 压力范围/MPa
    样品1 WY23-1 3 847.65 60~80 4.0 135 0~80
    样品2 WY23-1 3 847.15 60~80 4.0 135 0~80
    样品3 YY2 4 089.97 60~80 5.0 135 0~80
    注:实验参照国家标准《页岩甲烷等温吸附测定容积法:GB/T 35210.1—2017》。
    下载: 导出CSV

    表  2  不同温压下的Z

    Table  2.   Z value at different temperature and pressure

    压力/MPa 温度/℃ Z
    0.5 135 0.998
    1 135 0.997
    2 135 0.995
    4 135 0.988
    8 135 0.980
    12 135 0.975
    18 135 0.983
    24 135 0.987
    30 135 1.040
    40 135 1.060
    50 135 1.180
    65 135 1.310
    80 135 1.465
    下载: 导出CSV

    表  3  四川盆地威荣地区WY11-1现场解吸气含量

    Table  3.   Site desorbed gas content of well WY11-1, Weirong region, Sichuan Basin

    样品号 深度/
    m
    解吸气量/
    (cm3·g-1)
    解吸时间/
    min
    解吸速率/
    (cm3·min-1)
    岩心质量/
    g
    提钻时间/
    min
    地表暴露时间/
    min
    样品1 3 746.35 0.874 731 3.89 3 256 460 60
    样品2 3 747.09 0.826 740 3.87 3 467 460 60
    样品3 3 748.25 0.924 728 4.30 3 392 460 60
    样品4 3 749.07 0.663 726 2.92 3 204 460 60
    样品5 3 750.30 0.676 724 2.95 3 163 460 60
    样品6 3 751.45 1.027 723 5.00 3 523 460 60
    样品7 3 752.65 1.001 721 4.16 3 002 460 60
    样品8 3 754.34 0.920 719 3.97 3 104 460 60
    样品9 3 755.60 1.290 661 6.81 3 489 390 60
    样品10 3 756.73 1.211 660 5.98 3 261 390 60
    下载: 导出CSV
  • [1] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm

    HE Zhiliang, NIE Haikuan, HU Dongfeng, et al. Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. ActaPetrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm
    [2] 马新华. 非常规天然气"极限动用"开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htm

    MA Xinhua. "Extreme utilization" development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102011.htm
    [3] 聂海宽, 何治亮, 刘光祥, 等. 中国页岩气勘探开发现状与优选方向[J]. 中国矿业大学学报, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm

    NIE Haikuan, HE Zhiliang, LIU Guangxiang, et al. Status and direction of shale gas exploration and development in China[J]. Journal of China University of Mining & Technology, 2020, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm
    [4] 游声刚, 郭茜, 耿小烬, 等. 页岩含气量的影响因素分析及含气量测试方法[J]. 中国矿业, 2015, 24(12): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201512019.htm

    YOU Shenggang, GUO Qian, GENG Xiaojin, et al. Factors affecting the shale gas content and gas content testing methods[J]. China Mining Magazine, 2015, 24(12): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201512019.htm
    [5] 余川, 周洵, 方光建, 等. 地层温压条件下页岩吸附性能变化特征: 以渝东北地区龙马溪组为例[J]. 岩性油气藏, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htm

    YU Chuan, ZHOU Xun, FANG Guangjian, et al. Adsorptivity of shale under the formation temperature and pressure: a case of Longmaxi Formation in northeastern Chongqing[J]. Lithologic Reservoirs, 2018, 30(6): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201806002.htm
    [6] MALE F, ISLAM A W, PATZEK T W, et al. Analysis of gas production from hydraulically fractured wells in the Haynesville shale using scaling methods[J]. Journal of Unconventional Oil and Gas Resources, 2015, 10: 11-17. doi: 10.1016/j.juogr.2015.03.001
    [7] 马行陟, 柳少波, 姜林, 等. 页岩吸附气含量测定的影响因素定量分析[J]. 天然气地球科学, 2016, 27(3): 488-493. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603012.htm

    MA Xingzhi, LIU Shaobo, JIANG Lin, et al. Quantitative analysis on affecting factors of gas adsorption capacity measurement on the shale[J]. Natural Gas Geoscience, 2016, 27(3): 488-493. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603012.htm
    [8] SHTEPANI E, NOLL L A A, ELROD L WW, et al. A new regression-based method for accurate measurement of coal and shale gas content[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(2): 359-364.
    [9] 王曦蒙, 刘洛夫, 汪洋, 等. 川南地区龙马溪组页岩高压甲烷等温吸附特征[J]. 天然气工业, 2019, 39(12): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912006.htm

    WANG Ximeng, LIU Luofu, WANG Yang, et al. High-pressure isothermal methane adsorption characteristic of Longmaxi Formation shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912006.htm
    [10] 李爱芬, 韩文成, 孙海, 等. 考虑多因素的页岩气吸附模型: 以川东南五峰组—龙马溪组页岩为例[J]. 煤炭学报, 2021, 46(3): 1003-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103025.htm

    LI Aifen, HAN Wencheng, SUN Hai, et al. An adsorption model with multiple factors for shale gas: taking the Wufeng Formation-Longmaxi Formation shale in southeast Sichuan as an example[J]. Journal of China Coal Society, 2021, 46(3): 1003-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202103025.htm
    [11] 彭泽阳, 龙胜祥, 张永贵, 等. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006008.htm

    PENG Zeyang, LONG Shengxiang, ZHANG Yonggui, et al. A new method of adsorption isotherm in high temperature and pressure[J]. Natural Gas Geoscience, 2020, 31(6): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006008.htm
    [12] 杨洪志, 赵圣贤, 刘勇, 等. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 2019, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm

    YANG Hongzhi, ZHAO Shengxian, LIU Yong, et al. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm
    [13] 刘冬冬, 郭靖, 潘占昆, 等. 页岩气藏超压演化过程: 来自四川盆地南部五峰组—龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htm

    LIU Dongdong, GUO Jing, PAN Zhankun, et al. Overpressure evolution process in shale gas reservoir: evidence from the fluid inclusions in the fractures of Wufeng Formation-Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htm
    [14] 王濡岳, 聂海宽, 胡宗全, 等. 压力演化对页岩气储层的控制作用: 以四川盆地五峰组—龙马溪组为例[J]. 天然气工业, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htm

    WANG Ruyue, NIE Haikuan, HU Zongquan, et al. Controlling effect of pressure evolution on shale gas reservoirs: a case study of the Wufeng-Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(10): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202010002.htm
    [15] 苗雅楠, 李相方, 王香增, 等. 页岩有机质热演化生烃成孔及其甲烷吸附机理研究进展[J]. 中国科学(物理学力学天文学), 2017, 47(11): 114604. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711005.htm

    MIAO Yanan, LI Xiangfang, WANG Xiangzeng, et al. Review on hydrocarbon generation, pores formation and its methane adsorption mechanism in shale kerogen[J]. SCIENTIA SINICA(Physica, Mechanica & Astronomica), 2017, 47(11): 114604. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711005.htm
    [16] 杨建, 詹国卫, 赵勇, 等. 川南深层页岩气超临界吸附解吸附特征研究[J]. 油气藏评价与开发, 2021, 11(2): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102006.htm

    YANG Jian, ZHAN Guowei, ZHAO Yong, et al. Characteristics of supercritical adsorption and desorption of deep shale gas in South Sichuan[J]. Reservoir Evaluation and Development, 2021, 11(2): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202102006.htm
    [17] 张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J]. 岩矿测试, 2020, 39(2): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002005.htm

    ZHANG Yeyu, CAO Qian, HUANG Yi, et al. Application of high-temperature methane adsorption experiment to study the adsorption capacity of methane in shales from the Wufeng Formation, northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS202002005.htm
    [18] 薛冰, 张金川, 杨超, 等. 页岩含气量理论图版[J]. 石油与天然气地质, 2015, 36(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502021.htm

    XUE Bing, ZHANG Jinchuan, YANG Chao, et al. Theoretical chart of shale gas content[J]. Oil & Gas Geology, 2015, 36(2): 339-346. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502021.htm
    [19] 周尚文, 王红岩, 薛华庆, 等. 页岩含气量现场测试中损失气量的计算方法对比分析[J]. 中国科技论文, 2018, 13(21): 2453-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201821010.htm

    ZHOU Shangwen, WANG Hongyan, XUE Huaqing, et al. Comparative analysis of calculation methods for lost gas in the field-test of shale gas content[J]. China Sciencepaper, 2018, 13(21): 2453-2460. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201821010.htm
    [20] CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
    [21] 何家欢, 谢邦华, 钟磊, 等. 关于页岩损失气量计算方法的思考[J]. 非常规油气, 2019, 6(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201901006.htm

    HE Jiahuan, XIE Banghua, ZHONG Lei, et al. Thinking about the calculation method of shale gas loss[J]. Unconventional Oil & Gas, 2019, 6(1): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ201901006.htm
    [22] 李东晖, 聂海宽. 一种考虑气藏特征的页岩含气量计算方法: 以四川盆地及其周缘焦页1井和彭页1井为例[J]. 石油与天然气地质, 2019, 40(6): 1324-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906016.htm

    LI Donghui, NIE Haikuan. A new method to calculate shale gas content based on gas reservoir characterization: a case study of wells JY 1 and PY 1 in Sichuan Basin and its surrounding areas[J]. Oil & Gas Geology, 2019, 40(6): 1324-1332. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906016.htm
    [23] 刘洪林, 王红岩, 方朝合, 等. 中国南方海相页岩气超压机制及选区指标研究[J]. 地学前缘, 2016, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm

    LIU Honglin, WANG Hongyan, FANG Chaohe, et al. The formation mechanism of over-pressure reservoir and target screening index of the marine shale in the South China[J]. Earth Science Frontiers, 2016, 23(2): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602008.htm
    [24] 李倩文, 唐令, 庞雄奇. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评, 2020, 66(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002017.htm

    LI Qianwen, TANG Ling, PANG Xiongqi. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 2020, 66(2): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002017.htm
    [25] 赵金洲, 沈骋, 任岚, 等. 页岩储层不同赋存状态气体含气量定量预测: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htm

    ZHAO Jinzhou, SHEN Cheng, REN Lan, et al. Quantitative prediction of gas contents in different occurrence states of shale reservoirs: a case study of the Jiaoshiba shale gasfield in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704006.htm
    [26] 聂舟, 衡德, 邹源红, 等. 四川盆地长宁地区海相页岩吸附气含量演化特征: 以N201井五峰组—龙马溪组一段为例[J]. 海相油气地质, 2021, 26(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202101005.htm

    NIE Zhou, HENG De, ZOU Yuanhong, et al. Evolution of adsorbed gas content of marine shale in Changningarea, SichuanBasin: a case of Wufeng Formation-Longmaxi Member 1 in well N201[J]. Marine Origin Petroleum Geology, 2021, 26(1): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202101005.htm
    [27] 秦明阳, 郭建华, 何红生, 等. 四川盆地外复杂构造区页岩气地质条件及含气性特征: 以湘西北五峰组—龙马溪组为例[J]. 中南大学学报(自然科学版), 2018, 49(8): 1979-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808019.htm

    QIN Mingyang, GUO Jianhua, HE Hongsheng, et al. Geological conditions and gas-bearing characteristics of shale gas in complex structure area out of Sichuan basin: a case of Wufeng-Longmaxi formation in northwestern Hunan, China[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 1979-1990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808019.htm
    [28] 孙川翔, 聂海宽, 熊亮, 等. 从"源盖控烃"探讨四川盆地威远地区深层页岩气田富集高产地质因素[J]. 海相油气地质, 2022, 27(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202003.htm

    SUN Chuanxiang, NIE Haikuan, XIONG Liang, et al. Main geolo-gical factors of enrichment and high yield of deep shale gas reservoirs in Weiyuan area, Sichuan Basin: analyzed from the perspective of source-cap controlling hydrocarbon[J]. Marine Origin Petroleum Geology, 2022, 27(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202202003.htm
    [29] 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202105008.htm

    HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-LongmaxiFormation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202105008.htm
    [30] 杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm

    YANG Xiya, LIU Chenglin, LIU Wenping, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm
    [31] 聂海宽, 李沛, 党伟, 等. 四川盆地及周缘奥陶系—志留系深层页岩气富集特征与勘探方向[J]. 石油勘探与开发, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm

    NIE Haikuan, LI Pei, DANG Wei, et al. Enrichment characteristics and exploration directions of deep shale gas of Ordovician-Silurian in the Sichuan Basin and its surrounding areas, China[J]. Petroleum Exploration and Development, 2022, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm
    [32] NIE Haikuan, SUN Chuanxiang, LIU Guangxiang, et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China: implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019, 101: 243-251.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  68
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-08-13
  • 刊出日期:  2022-09-28

目录

    /

    返回文章
    返回