留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同边长及分辨率下陆相页岩微孔隙非均质特性分析——以鄂尔多斯盆地瑶科1井长72页岩为例

尚彦军 赵斌 胡瑞林 邵鹏

尚彦军, 赵斌, 胡瑞林, 邵鹏. 不同边长及分辨率下陆相页岩微孔隙非均质特性分析——以鄂尔多斯盆地瑶科1井长72页岩为例[J]. 石油实验地质, 2020, 42(1): 156-162. doi: 10.11781/sysydz202001156
引用本文: 尚彦军, 赵斌, 胡瑞林, 邵鹏. 不同边长及分辨率下陆相页岩微孔隙非均质特性分析——以鄂尔多斯盆地瑶科1井长72页岩为例[J]. 石油实验地质, 2020, 42(1): 156-162. doi: 10.11781/sysydz202001156
SHANG Yanjun, ZHAO Bin, HU Ruilin, SHAO Peng. Micropore inhomogeneity of continental shale under different side length and resolution: a case study of Chang 72 shale from well Yaoke 1 in Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(1): 156-162. doi: 10.11781/sysydz202001156
Citation: SHANG Yanjun, ZHAO Bin, HU Ruilin, SHAO Peng. Micropore inhomogeneity of continental shale under different side length and resolution: a case study of Chang 72 shale from well Yaoke 1 in Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2020, 42(1): 156-162. doi: 10.11781/sysydz202001156

不同边长及分辨率下陆相页岩微孔隙非均质特性分析——以鄂尔多斯盆地瑶科1井长72页岩为例

doi: 10.11781/sysydz202001156
基金项目: 

中国科学院战略先导专项 XDB10030103

详细信息
    作者简介:

    尚彦军(1967-), 男, 博士, 研究员, 从事水文工程地质科研教学工作。E-mail: jun94@mail.igcas.ac.cn

  • 中图分类号: TE122.2

Micropore inhomogeneity of continental shale under different side length and resolution: a case study of Chang 72 shale from well Yaoke 1 in Ordos Basin

  • 摘要: 陆相页岩的非均质性与海相页岩不同,其主要表现为孔隙结构的非均质性。以鄂尔多斯盆地瑶科1井采出的上三叠统长72黑色页岩为例,利用微米CT在1 μm分辨率下对7个不同边长(100~700 μm)、纳米CT在65 nm分辨率下对4个不同边长(10~39 μm)的孔隙和裂缝进行了观测和分析。建立了3D图像重构基础上的不同边长及分辨率的孔隙指标非均质特性表征:孔隙数量和体积随边长增加而呈指数增大,面密度随边长增大而减小,长宽平均值及其比值基本不变。作为表征连通性指标的配位数与孔隙长度均值关系较为密切。

     

  • 图  1  样品微米CT扫描重构图像

    左为三维显示;中上为同一平面上向下切立体块;右为同一平面切割图像放大;数字表示边长, μm。

    Figure  1.  Micro CT images after reconstruction

    图  2  样品纳米CT扫描重构图像

    左为三维显示;中为向下切立体块;右为切割面图像放大。数字表示边长, μm。

    Figure  2.  Nano CT images after reconstruction

    图  3  微米CT扫描重构边长700 μm的立方块体及微裂隙分布

    Figure  3.  Micro CT scanned image and micro-fissure distribution in a cubic block (side length 700 μm)

    图  4  应用Connected技术显示的截图区内的孔隙连通情况

    Figure  4.  Connectivity of pores shown by Connected technique

    图  5  CT扫描图像中不同边长立方块孔隙参量变化对比

    Figure  5.  Pore indices for description of cubic blocks from CT images

    图  6  不同观测尺度下长宽比值的孔隙数量变化曲线

    Figure  6.  Variation of pore quantity vs. different ratios of length with width

    表  1  微米—纳米CT扫描实验条件

    Table  1.   Micro CT and Nano CT scanning situations

    检测类型 仪器型号 视域 像素 分辨率 样品规格 3D方块边长/μm 二维灰度图像
    微米CT Xradia micro CT VERSA-500 2 mm×2 mm 2 048×2 048 1 μm 圆柱, Φ2 mm, 高2 mm 100, 200, 300, 400, 500, 600, 700 1 984张
    纳米CT Xradia L-200 Nano CT ULTRAXRM 65 μm×65 μm 1 024×1 024 65 nm 圆柱, Φ65 μm, 高65μm 10, 20, 30, 39 1 021张
    下载: 导出CSV

    表  2  不同边长立方块的孔隙特征

    Table  2.   Pore features of cubic blocks at 11 different side lengths

    边长/μm 孔隙数/个 裂隙数/个 (孔隙+裂隙)数/个 (孔隙+裂隙)体积/μm3 总体积/μm3 孔隙度/% (孔隙+裂隙)总长/μm 面密度/(μm·μm-2) 长/μm 宽/μm 长/宽 喉道与孔隙半径比 配位数
    10 210 150 360 20.35 906.28 2.245 142.281 1.423 $\frac{{0.092 \sim 10.022}}{{0.395}}$ $\frac{{0.065 \sim 3.775}}{{0.214}}$ $\frac{{0.96 \sim 4.00}}{{1.86}}$ $\frac{{0 \sim 9}}{{1.66}}$
    20 1 268 854 2 122 111.88 7 301.73 1.532 895.622 2.239 $\frac{{0.092 \sim 11.866}}{{0.422}}$ $\frac{{0.065 \sim 5.196}}{{0.230}}$ $\frac{{0.96 \sim 6.00}}{{1.83}}$ $\frac{{1 \sim 10}}{{1.71}}$
    30 3 894 550 4 444 406.00 2.63×104 1.542 1 779.817 1.978 $\frac{{0.092 \sim 14.149}}{{0.401}}$ $\frac{{0.065 \sim 9.463}}{{0.221}}$ $\frac{{0.96 \sim 5.40}}{{1.83}}$ $\frac{{0 \sim 9}}{{1.64}}$
    39 2 307 1578 3 885 539.06 5.88×104 0.917 1 654.060 1.087 $\frac{{0.092 \sim 15.255}}{{0.426}}$ $\frac{{0.065 \sim 8.227}}{{0.223}}$ $\frac{{1.00 \sim 10.00}}{{1.93}}$ $\frac{{0.04 \sim 0.96}}{{0.33}}$ $\frac{{1 \sim 12}}{{1.68}}$
    100 253 190 443 3.49×104 9.64×105 3.620 3 204.079 0.320 $\frac{{1.414 \sim 72.717}}{{7.233}}$ $\frac{{1.000 \sim 21.920}}{{3.383}}$ $\frac{{1.00 \sim 9.00}}{{2.00}}$ $\frac{{0.29 \sim 1.09}}{{0.63}}$ $\frac{{0 \sim 4}}{{1.44}}$
    200 1 632 735 2 367 2.51×105 7.74×106 3.248 1.877×104 0.469 $\frac{{1.414 \sim 66.468}}{{7.929}}$ $\frac{{1.000 \sim 26.839}}{{3.757}}$ $\frac{{1.00 \sim 8.01}}{{2.04}}$ $\frac{{0.17 \sim 1.30}}{{0.52}}$ $\frac{{0 \sim 6}}{{1.58}}$
    300 4 444 1 458 5 902 1.06×106 2.59×107 4.073 3.330×104 0.370 $\frac{{1.414 \sim 89.239}}{{7.493}}$ $\frac{{1.000 \sim 41.754}}{{3.662}}$ $\frac{{0.96 \sim 9.19}}{{1.95}}$
    400 4 785 6 464 1.12×104 2.39×106 6.16×107 3.882 3.927×104 0.245 $\frac{{1.414 \sim 106.000}}{{8.836}}$ $\frac{{1.000 \sim 36.338}}{{4.038}}$ $\frac{{1.00 \sim 10.00}}{{2.11}}$ $\frac{{0.09 \sim 2.18}}{{0.48}}$ $\frac{{0 \sim 11}}{{1.86}}$
    500 4 444 1.67×104 2.11×104 4.29×106 1.21×108 3.554 4.038×104 0.162 $\frac{{1.414 \sim 94.173}}{{9.087}}$ $\frac{{1.000 \sim 39.294}}{{4.126}}$ $\frac{{0.96 \sim 12.00}}{{2.11}}$
    600 1.71×104 2.07×104 3.78×104 8.22×106 2.08×108 3.959 4.044×104 0.112 $\frac{{1.414 \sim 84.247}}{{9.100}}$ $\frac{{1.000 \sim 30.249}}{{4.054}}$ $\frac{{0.92 \sim 9.00}}{{2.16}}$ $\frac{{0.09 \sim 2.18}}{{0.49}}$ $\frac{{0 \sim 12}}{{1.81}}$
    700 4.44×104 1.96×104 6.41×104 1.43×107 3.28×108 4.364 4.118×104 0.084 $\frac{{1.414 \sim 106.177}}{{9.266}}$ $\frac{{1.000 \sim 40.213}}{{4.163}}$ $\frac{{0.96 \sim 9.42}}{{2.13}}$
    注:表中分式的意义为:$\frac{{最小值 \sim 最大值}}{{平均值}}$。
    下载: 导出CSV
  • [1] 王香增, 张金川, 曹金舟, 等. 陆相页岩气资源评价初探: 以延长直罗-下寺湾区中生界长7段为例[J]. 地学前缘, 2012, 19(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202029.htm

    WANG Xiangzeng, ZHANG Jinchuan, CAO Jinzhou, et al. A preliminary discussion on evaluation of continental shale gas resources: a case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan area of Yanchang[J]. Earth Science Frontiers, 2012, 19(2): 192-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201202029.htm
    [2] 李成成, 周世新, 李靖, 等. 鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素[J]. 沉积学报, 2017, 35(2): 315-329. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201702010.htm

    LI Chengcheng, ZHOU Shixin, LI Jing, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(2): 315-329. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201702010.htm
    [3] 赵帮胜, 李荣西, 覃小丽, 等. 鄂尔多斯盆地中部上古生界山西组页岩储层特征[J]. 沉积学报, 2019, doi: 10.14027/j.issn.1000-0550.2019.054.

    ZHAO Bangsheng, LI Rongxi, QIN Xiaoli, et al. Characteristics of shale reservoirs in the Upper Paleozoic Shanxi Formation in the central Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, doi: 10.14027/j.issn.1000-0550.2019.054.
    [4] 李丽慧, 黄北秀, 李严严, 等. 考虑页岩纹层与裂缝网络的延长组页岩多尺度三维地质结构模型[J]. 工程地质学报, 2019, 27(1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901008.htm

    LI Lihui, HUANG Beixiu, LI Yanyan, et al. Multi-scale 3-D modeling of Yanchang shale geological strucutre considering laminas and fracture networks[J]. Journal of Engineering Geo-logy, 2019, 27(1): 69-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201901008.htm
    [5] 赵斌, 尚彦军. 基于复杂网络理论的页岩纳米孔隙连通性表征[J]. 工程地质学报, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm

    ZHAO Bin, SHANG Yanjun. Characterizing connectivity of nano-sized pores of shale based on complex network theory[J]. Journal of Engineering Geology, 2018, 26(2): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201802028.htm
    [6] 支东明, 唐勇, 杨智峰, 等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质, 2019, 40(3): 524-434. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm

    ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological chara-cteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903009.htm
    [7] 赵静. 陆相页岩气成藏条件分析: 以松辽盆地南部S洼槽为例[J]. 断块油气田, 2019, 26(3): 290-293, 313. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htm

    ZHAO Jing. Accumulation conditions of shale gas in continental facies: taking S Depression of Songliao Basin as an example[J]. Fault-Block Oil and Gas Field, 2019, 26(3): 290-293, 313. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201903005.htm
    [8] 马晓潇, 黎茂稳, 蒋启贵, 等. 陆相页岩含油性的化学动力学定量评价方法[J]. 油气地质与采收率, 2019, 26(1): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htm

    MA Xiaoxiao, LI Maowen, JIANG Qigui, et al. Chemical kinetic model for quantitative evaluation on oil-bearing property of lacustrine shale[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 137-152. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901015.htm
    [9] 胡文瑄, 姚素平, 陆现彩, 等. 典型陆相页岩油层系成岩过程中有机质演化对储集性的影响[J]. 石油与天然气地质, 2019, 40(5): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905001.htm

    HU Wenxuan, YAO Suping, LU Xiancai, et al. Effects of organic matter evolution on oil reservoir property during diagenesis of typical continental shale sequences[J]. Oil & Gas Geology, 2019, 40(5): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905001.htm
    [10] 高辉, 何梦卿, 赵鹏云, 等. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133

    GAO Hui, HE Mengqing, ZHAO Pengyun, et al. Comparison of geological characteristics of Chang 7 shale oil in Ordos Basin and typical shale oil in North America[J]. Petroleum Geology & Experiment, 2018, 40(2): 133-140. doi: 10.11781/sysydz201802133
    [11] 刘国恒, 黄志龙, 姜振学, 等. 湖相页岩液态烃对页岩吸附气实验的影响: 以鄂尔多斯盆地延长组页岩为例[J]. 石油实验地质, 2015, 37(5): 648-653. doi: 10.11781/sysydz201505648

    LIU Guoheng, HUANG Zhilong, JIANG Zhenxue, et al. Effect of liquid hydrocarbons on gas adsorption in a lacustrine shale: a case study of the Yanchang Formation, Ordos Basin[J]. Petro-leum Geology & Experiment, 2015, 37(5): 648-653. doi: 10.11781/sysydz201505648
    [12] 赵立鹏. 江西省富有机质页岩孔裂隙结构特征及其对页岩气富集的影响[D]. 北京: 中国矿业大学, 2015.

    ZHAO Lipeng. Pore-fissures characteristics of the shale/mudstone reservoirs and their influence on shale gas enrichment in Jiangxi Province[D]. Beijing: China University of Mining & Technology, 2015.
    [13] 鲍云杰, 李志明, 杨振恒, 等. 孔隙度测定误差及其控制方法研究[J]. 石油实验地质, 2019, 41(4): 593-597. doi: 10.11781/sysydz201904593

    BAO Yunjie, LI Zhiming, YANG Zhenheng, et al. Porosity mea-surement error and its control method[J]. Petroleum Geology & Experiment, 2019, 41(4): 593-597. doi: 10.11781/sysydz201904593
    [14] 郭彤楼. 页岩气勘探开发中的几个地质问题[J]. 油气藏评价与开发, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm

    GUO Tonglou. A few geological issues in shale gas exploration and development[J]. Reservoir Evaluation and Development, 2019, 9(5): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201905002.htm
    [15] 邹才能, 董大忠, 杨桦, 等. 中国页岩气形成条件及勘探实践[J]. 天然气工业, 2011, 31(12): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112007.htm

    ZOU Caineng, DONG Dazhong, YANG Hua, et al. Conditions of shale gas accumulation and exploration practices in China[J]. Natural Gas Industry, 2011, 31(12): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112007.htm
    [16] 黎茂稳, 马晓潇, 蒋启贵, 等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm

    LI Maowen, MA Xiaoxiao, JIANG Qigui, et al. Enligh tenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm
    [17] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比: 以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htm

    WANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shale: a case study of the Lower Cambrian in Cengongarea, northern Guizhou Province[J]. Oil & Gas Geo-logy, 2018, 39(4): 631-640. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804002.htm
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  68
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2019-12-01
  • 刊出日期:  2020-01-28

目录

    /

    返回文章
    返回