留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海陆架盆地西湖凹陷中北部花港组储层致密化过程分析

张武 蒋一鸣 肖晓光 陈浩 苗清 徐志星

张武, 蒋一鸣, 肖晓光, 陈浩, 苗清, 徐志星. 东海陆架盆地西湖凹陷中北部花港组储层致密化过程分析[J]. 石油实验地质, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086
引用本文: 张武, 蒋一鸣, 肖晓光, 陈浩, 苗清, 徐志星. 东海陆架盆地西湖凹陷中北部花港组储层致密化过程分析[J]. 石油实验地质, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086
ZHANG Wu, JIANG Yiming, XIAO Xiaoguang, CHEN Hao, MIAO Qing, XU Zhixing. Densification process of Huagang Formation in northern and central Xihu Sag of East China Sea Shelf Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086
Citation: ZHANG Wu, JIANG Yiming, XIAO Xiaoguang, CHEN Hao, MIAO Qing, XU Zhixing. Densification process of Huagang Formation in northern and central Xihu Sag of East China Sea Shelf Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 86-95. doi: 10.11781/sysydz202101086

东海陆架盆地西湖凹陷中北部花港组储层致密化过程分析

doi: 10.11781/sysydz202101086
基金项目: 

“十三五”国家科技重大专项“深层优势储层孔喉结构及成岩环境分析技术” 2016ZX05027002

详细信息
    作者简介:

    张武(1988-), 男, 硕士, 工程师, 从事沉积储层研究。E-mail: zhangwu8@cnooc.com.cn

  • 中图分类号: TE122.23

Densification process of Huagang Formation in northern and central Xihu Sag of East China Sea Shelf Basin

  • 摘要: 综合运用薄片鉴定、扫描电镜、恒速压汞、X衍射、流体包裹体测温、激光拉曼成分分析及伊利石同位素测年等技术方法,分析了东海陆架盆地西湖凹陷中北部花港组储层致密化过程,并探讨了储层致密化控制因素。花港组储层非均质性受孔喉结构控制,喉道半径小于1 μm即为致密储层;埋藏压实是储层普遍低渗、致密的主因,差异成岩作用加剧了储层的差异演化,当地温超过160℃,环边绿泥石对胶结作用的抑制明显减弱,中成岩B期碱性封闭环境使得大量含铁碳酸盐、绒球状绿泥石及搭桥状伊利石富集直接堵塞喉道,造成花港组储层规模性致密。对花港组储层关键成岩期演化过程进行恢复,推测花港组H4、H5砂层组在9~7 Ma进入规模性致密,龙井运动强烈侧向挤压加速了致密化进程。

     

  • 图  1  东海陆架盆地西湖凹陷构造带位置及地层简表

    Figure  1.  Regional tectonic division and stratigraphic column of Xihu Sag, East China Sea Shelf Basin

    图  2  东海陆架盆地西湖凹陷中北部花港组储层孔隙类型特征

    Figure  2.  Pore type characteristics of Huagang reservoirs in northern and central Xihu Sag, East China Sea Shelf Basin

    图  3  东海陆架盆地西湖凹陷中北部花港组储层孔喉结构特征

    Figure  3.  Pore throat characteristics of Huagang reservoirs in northern and central Xihu Sag, East China Sea Shelf Basin

    图  4  东海陆架盆地西湖凹陷中北部花港组粒度及泥质含量与储层物性的关系

    Figure  4.  Relationship between particle size and argillaceous content with reservoir physical properties of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    图  5  东海陆架盆地西湖凹陷中北部花港组胶结物含量—负胶结物孔隙度投点图

    Figure  5.  A scatter diagram of cement content and negative cementation porosity of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    图  6  东海陆架盆地西湖凹陷中北部花港组胶结物含量与储层物性的关系

    Figure  6.  Relationship between cement content and reservoir physical properties of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    图  7  东海陆架盆地西湖凹陷中北部花港组黏土矿物特征

    Figure  7.  Clay mineral characteristics of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    图  8  东海陆架盆地西湖凹陷中北部花港组物性与黏土矿物演化对比

    Figure  8.  Comparison of reservoir physical properties and clay mineral evolution of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    图  9  东海陆架盆地西湖凹陷中北部花港组储层包裹体均一温度与地层温度

    Figure  9.  Inclusion homogenization temperature and formation temperature of Huagang reservoirs in northern and central Xihu Sag, East China Sea Shelf Basin

    图  10  东海陆架盆地西湖凹陷中北部花港组成岩演化与储层致密化关键时刻

    Figure  10.  Critical moments of diagenetic evolution and reservoir densification of Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    表  1  东海陆架盆地西湖凹陷中北部花港组烃类包裹体激光拉曼分析结果

    Table  1.   Laser Raman analysis results of hydrocarbon inclusions in Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    井号 深度/m 层位 包裹体特征 赋存状态 均一温度/℃ 盐度/% 测点位置 成分 谱峰位置/cm-1 充注期次
    Z4 3 739 H3 气烃包裹体 石英加大边内侧成带状分布 132~137 4.80~4.96 气相 CO2 1 336,1 605 Ⅰ期
    CH4 2 910
    3 739 H3 含烃盐水包裹体 切穿石英成岩期后微裂隙 141~150 0.88~2.07 气相 CH4 2 918 Ⅱ期
    下载: 导出CSV

    表  2  东海陆架盆地西湖凹陷中北部花港组自生伊利石40Ar/38Ar同位素定年测试结果

    Table  2.   40Ar/38Ar isotopic dating of authigenic illites in Huagang Formation in northern and central Xihu Sag, East China Sea Shelf Basin

    井号 深度/m 层位 流体性质 K2O/% 40K/(10-7mol·g-1) 40Ar/38Ar 40Ar*/(10-10mol·g-1) 年龄/Ma ±1σ/Ma
    Z4 3 699.3~3 716.2 H3 致密气层 9.08 2.18 1.004 5 1.18 9.35 0.16
    Z4 3 808.9~3 820.9 H3 气层 9.15 2.19 1.051 6 1.45 11.32 0.21
    Z5 3 855.0~3 861.0 H3 致密气层 9.99 2.40 0.996 6 1.32 9.44 0.16
    Z4 4 005.7~4 014.1 H4 致密气层 9.66 2.32 1.031 3 1.36 10.05 0.19
    Z3 3 597.5~3 618.1 H3 含气水层 9.40 2.25 1.157 8 1.50 11.40 0.21
    注:*代表放射性成因氩。
    下载: 导出CSV
  • [1] 国家能源局. 致密砂岩气地质评价方法: SY/T 6832-2011[S]. 北京: 石油工业出版社, 2011.

    National Energy Administration. Geological evaluating methods for tight sandstone gas: SY/T 6832-2011[S]. Beijing: Petroleum Industry Press, 2011.
    [2] 朱筱敏, 潘荣, 朱世发, 等. 致密储层研究进展和热点问题分析[J]. 地学前缘, 2018, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm

    ZHU Xiaomin, PAN Rong, ZHU Shifa, et al. Research progress and core issues in tight reservoir exploration[J]. Earth Science Frontiers, 2018, 25(2): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802019.htm
    [3] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    [4] 陶士振, 邹才能. 东海盆地西湖凹陷天然气成藏及分布规律[J]. 石油勘探与开发, 2005, 32(4): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504019.htm

    TAO Shizhen, ZOU Caineng. Accumulation and distribution of natural gases in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration & Development, 2005, 32(4): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200504019.htm
    [5] 张武, 侯国伟, 肖晓光, 等. 西湖凹陷低渗储层成因及优质储层主控因素[J]. 中国海上油气, 2019, 31(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903005.htm

    ZHANG Wu, HOU Guowei, XIAO Xiaoguang, et al. Genesis of low permeability reservoirs and main controlling factors of high quality reservoirs in Xihu Sag, East China Sea Basin[J]. China Offshore Oil and Gas, 2019, 31(3): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903005.htm
    [6] 刘金水, 唐健程. 西湖凹陷低渗储层微观孔隙结构与渗流特征及其地质意义: 以HY构造花港组为例[J]. 中国海上油气, 2013, 25(2): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201302002.htm

    LIU Jinshui, TANG Jiancheng. Mircoscopic pore texture and percolation features in the low permeability reservoirs and their geolo-gical significance in Xihu Sag: a case of Huagang Formation in HY structure[J]. China Offshore Oil and Gas, 2013, 25(2): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201302002.htm
    [7] 张武, 俆发, 徐国盛, 等. 西湖凹陷某构造花港组致密砂岩储层成岩作用与孔隙演化[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202003.htm

    ZHANG Wu, XU Fa, XU Guosheng, et al. Diagenesis and pore evolution of Huagang Formation tight sandstone reservoirs in a structure of Xihu Depression in East China Sea Basin[J]. Journal of Chengdu University of Technology (Science & Techno-logy Edition), 2012, 39(2): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202003.htm
    [8] 周心怀, 蒋一鸣, 唐贤君. 西湖凹陷成盆背景、原型盆地演化及勘探启示[J]. 中国海上油气, 2019, 31(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903001.htm

    ZHOU Xinhuai, JIANG Yiming, TANG Xianjun. Tectonic setting, prototype basin evolution and exploration enlightenment of Xihu Sag in East China Sea Basin[J]. China Offshore Oil and Gas, 2019, 31(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903001.htm
    [9] 徐陈杰, 叶加仁, 刘金水, 等. 东海西湖凹陷平湖组Ⅲ型干酪根暗色泥岩生排烃模拟[J]. 石油与天然气地质, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm

    XU Chenjie, YE Jiaren, LIU Jinshui, et al. Simulation of hydrocarbon generation and expulsion for the dark mudstone with type-Ⅲ kerogen in the Pinghu Formation of Xihu Sag in East China Sea Shelf Basin[J]. Oil & Gas Geology, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm
    [10] 周荔青, 江东辉, 张尚虎, 等. 东海西湖凹陷大中型油气田形成条件及勘探方向[J]. 石油实验地质, 2020, 42(5): 803-812. doi: 10.11781/sysydz202005803

    ZHOU Liqing, JIANG Donghui, ZHANG Shanghu, et al. Formation conditions and exploration direction of large and medium oil and gas reservoirs in Xihu Sag, East China Sea[J]. Petroleum Geology & Experiment, 2020, 42(5): 803-812. doi: 10.11781/sysydz202005803
    [11] 张国华, 刘金水, 秦兰芝, 等. 西湖凹陷渐新统花港组大型辫状河沉积体系特征[J]. 中国海上油气, 2018, 30(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201803002.htm

    ZHANG Guohua, LIU Jinshui, QIN Lanzhi, et al. Characteristics of the large braided river depositional system of the Oligocene Huagang Formation in the Xihu Sag[J]. China Offshore Oil and Gas, 2018, 30(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201803002.htm
    [12] 朱毅秀, 黄导武, 王欢, 等. 东海西湖凹陷A气田渐新统花港组三段厚层砂岩沉积环境[J]. 石油与天然气地质, 2019, 40(6): 1226-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906007.htm

    ZHU Yixiu, HUANG Daowu, WANG Huan, et al. Sedimentary setting of thick sandstone in the 3rd member of the Oligocene Huagang Formation in A gas field in the Xihu Sag, East China Sea Basin[J]. Oil & Gas Geology, 2019, 40(6): 1226-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906007.htm
    [13] 王健伟, 吕鹏, 曾联波, 等. 西湖凹陷X气藏花港组H3段储层特征及影响因素[J]. 断块油气田, 2020, 27(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001006.htm

    WANG Jianwei, LYU Peng, ZENG Lianbo, et al. Characteristics and influencing factors of reservoir in H3 section of Huagang Formation, X gas reservoir, Xihu Sag[J]. Fault-Block Oil and Gas Field, 2020, 27(1): 22-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202001006.htm
    [14] 黄导武, 段冬平, 刘彬彬, 等. 西湖凹陷低渗-致密砂岩气藏储层特征及差异成因[J]. 中国海上油气, 2019, 31(3): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903012.htm

    HUANG Daowu, DUAN Dongping, LIU Binbin, et al. Reservoir characteristics and differential genesis of low permeability-tight sandstone gas reservoirs in Xihu Sag[J]. China Offshore Oil and Gas, 2019, 31(3): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201903012.htm
    [15] 李道品. 低渗透砂岩油田开发[M]. 北京: 石油工业出版社, 1997.

    LI Daopin. The development of the low permeability sandstone oil field[M]. Beijing: Petroleum Industry Press, 1997.
    [16] 田建锋, 陈振林, 凡元芳, 等. 砂岩中自生绿泥石的产状、形成机制及其分布规律[J]. 矿物岩石地球化学通报, 2008, 27(2): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200802017.htm

    TIAN Jianfeng, CHEN Zhenlin, FAN Yuanfang, et al. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2): 200-205. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200802017.htm
    [17] AJDUKIEWICZ J M, LARESE R E. How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: observations and experiments[J]. AAPG Bulletin, 2012, 96(11): 2091-2119.
    [18] 黄思静, 黄可可, 冯文立, 等. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成: 来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球化学, 2009, 38(5): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htm

    HUANG Sijing, HUANG Keke, FENG Wenli, et al. Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis: a case study on the Upper Paleozoic, Ordos Basin and Xujiahe Formation, Western Sichuan Depression[J]. Geochimica, 2009, 38(5): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200905010.htm
    [19] 朱如凯, 邹才能, 张鼐, 等. 致密砂岩气藏储层成岩流体演化与致密成因机理: 以四川盆地上三叠统须家河组为例[J]. 中国科学(D辑地球科学), 2009, 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm

    ZHU Rukai, ZOU Caineng, ZHANG Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science in China(Series D: Earth Sciences), 2008, 51(9): 31340-1353. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm
    [20] 张哲豪, 魏新善, 弓虎军, 等. 鄂尔多斯盆地定边油田长7致密砂岩储层成岩作用及孔隙演化规律[J]. 油气地质与采收率, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htm

    ZHANG Zhehao, WEI Xinshan, GONG Hujun, et al. Diagenesis characteristics and evolution of porosity of Chang7 tight sandstone reservoir in Dingbian Oilfield, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002007.htm
    [21] 邱隆伟, 穆相骥, 李浩, 等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902006.htm

    QIU Longwei, MU Xiangji, LI Hao, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902006.htm
    [22] 苏奥, 陈红汉, 王存武, 等. 低渗致密砂岩储层的致密化机理与成岩流体演化: 以东海西湖凹陷中央背斜带北部花港组为例[J]. 中国矿业大学学报, 2016, 45(5): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201605016.htm

    SU Ao, CHEN Honghan, WANG Cunwu, et al. Densification mechanism and diagenesis fluid evolution of low-porosity and low-permeability tight sandstone reservoir: an example from Huagang Formation in the northern of the central anticlinal zone in Xihu Depression, East China Sea[J]. Journal of China University of Mining & Technology, 2016, 45(5): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201605016.htm
    [23] 徐国盛, 徐芳艮, 袁海锋, 等. 西湖凹陷中央反转构造带花港组致密砂岩储层成岩环境演变与孔隙演化[J]. 成都理工大学学报(自然科学版), 2016, 43(4): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201604001.htm

    XU Guosheng, XU Fanggen, YUAN Haifeng, et al. Evolution of pore and diagenetic environment for the tight sandstone reservoir of Paleogene Huagang Formation in the central reversal structural belt in Xihu Sag, East China Sea[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(4): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201604001.htm
    [24] 刘德汉, 卢焕章, 肖贤明. 油气包裹体及其在石油勘探和开发中的应用[M]. 广州: 广东科技出版社, 2007.

    LIU Dehan, LU Huanzhang, XIAO Xianming. Oil-gas inclusion and its application in petroleum exploration and development[M]. Guangzhou: Guangdong Science & Technology Press, 2007.
    [25] 核工业北京地质研究院. 矿物流体包裹体温度的测定: EJ/T 1105-1999[S]. 北京: 中国核工业总公司, 1999.

    Beijing Research Institute of Uranium Geology. Determination of temperature for fluid inclusion in minerals: EJ/T 1105-1999[S]. Beijing: China National Nuclear Corporation, 1999.
    [26] 刘勇, 徐国盛, 曾兵, 等. 东海盆地西湖凹陷花港组储层孔隙演化与油气充注关系[J]. 石油实验地质, 2018, 40(2): 168-176. doi: 10.11781/sysydz201802168

    LIU Yong, XU Guosheng, ZENG Bing, et al. Relationship between porosity evolution and hydrocarbon charging in tight sandstone reservoirs in Oligocene Huagang Formation, Xihu Sag, East China Sea Basin[J]. Petroleum Geology and Experiment, 2018, 40(2): 168-176. doi: 10.11781/sysydz201802168
    [27] SURDAM R C, CROSSEY L J, HAGEN E S, et al. Organic-inorganic and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  90
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-14
  • 修回日期:  2020-12-07
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回