留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用

冯动军 肖开华

冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
引用本文: 冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
FENG Dongjun, XIAO Kaihua. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
Citation: FENG Dongjun, XIAO Kaihua. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368

恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用

doi: 10.11781/sysydz202102368
基金项目: 

中国石化科技部项目“新场须四段致密气藏描述” P14158

详细信息
    作者简介:

    冯动军(1976—), 男, 博士, 高级工程师, 主要从事非常规油气地质研究。E-mail: fengdj.syky@sinopec.com

  • 中图分类号: TE132.2

Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin

  • 摘要: 在深入分析恒速压汞法和核磁共振实验原理的基础上,结合岩心实验结果,分析川西新场地区上三叠统须家河组四段储集空间类型、孔隙结构类型、孔喉特征、孔喉比特征及其与孔、渗相关关系,研究孔隙和喉道对毛细管曲线的影响,探讨孔喉特征对可动流体参数的影响。川西须四段为低孔、低—超低渗致密储层,孔隙度介于1.6%~10.9%,平均5.9%,渗透率介于(0.01~2.81)×10-3 μm2,平均0.37×10-3 μm2。发育粗喉大孔、粗喉小孔、细喉大孔和细喉小孔4类孔隙结构类型,孔隙半径介于8~180 μm,平均112 μm,以微孔—小孔为主;喉道半径介于0.100~1.008 μm,平均0.484 μm,以微喉为主。孔隙半径对低—超低渗储层的物性影响较小,喉道半径与渗透率相关性较好,其影响了毛细管曲线的变化,控制了低渗透储层的物性特征,是决定气藏开发效果的关键性因素。孔隙半径、喉道半径和最终进汞饱和度对可动流体参数影响较大,基于此三项参数提出孔隙结构指数,结合测井曲线开展了川西致密砂岩储层评价,评价结果与实际效果吻合较好。

     

  • 图  1  四川盆地西部新场地区须家河组四段砂岩储层储集空间类型

    Figure  1.  Reservoir space types of sandstone reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  2  四川盆地西部新场地区须家河组四段致密储层孔隙结构类型

    Figure  2.  Pore structure types of tight reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  3  四川盆地西部新场地区须家河组四段致密储层孔隙半径分布

    Figure  3.  Pore radius distribution of tight reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  4  四川盆地西部新场地区须家河组四段致密储层喉道半径分布

    Figure  4.  Throat radius distribution of tight reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  5  四川盆地西部新场地区须家河组四段致密储层孔喉比分布

    Figure  5.  Distribution of pore-throat ratio of tight reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  6  四川盆地西部新场地区须家河组四段毛细管曲线特征

    Figure  6.  Characteristics of capillary curves of fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  7  四川盆地西部新场地区须家河组四段孔隙结构与可动流体参数相关关系

    Figure  7.  Correlation between pore structure and movable fluid parameters of fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    图  8  四川盆地西部新场地区致密储层孔隙结构参数与孔、渗相关性

    Figure  8.  Correlation between pore structure parameters and porosity and permeability of tight reservoirs in Xinchang area, western Sichuan Basin

    图  9  四川盆地西部新场X井基于孔隙结构参数的储层评价

    Figure  9.  Reservoir evaluation of well X based on pore structure parameters, Xinchang area, western Sichuan Basin

    表  1  四川盆地西部新场地区须家河组四段砂岩储层孔隙结构参数统计

    Table  1.   Statistics of pore structure parameters of sandstone reservoirs in fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    样号 层位 孔隙度/% 渗透率/10-3 μm2 孔隙体积/cm3 喉道半径平均值/μm 孔隙半径平均值/μm 孔喉半径比平均值 最终进汞饱和度/% 总孔隙进汞饱和度/% 总喉道进汞饱和度/% 总孔/喉体积比 可动流体孔隙度/% 可动流体/% 束缚流体/%
    XC23-3 上亚段 Tx42 5.90 0.16 0.34 0.523 147.80 319.0 20.31 3.44 16.87 0.20 4.26 13.20 86.80
    XC22-2 Tx43 7.80 0.29 0.36 0.496 154.33 382.6 34.93 15.24 19.69 0.77 6.33 26.74 73.26
    XC23-4 Tx43 8.10 0.45 0.30 0.627 135.87 262.1 23.78 3.59 20.19 0.18 6.68 11.05 88.95
    CX565-10 Tx44 9.50 0.49 0.27 0.436 148.38 422.6 30.79 10.08 20.71 0.49 8.15 26.91 73.09
    XC23-9 Tx44 10.90 2.81 0.36 1.088 141.51 145.6 27.77 6.73 21.04 0.32 9.07 27.47 72.53
    XC26-4 Tx44 7.10 0.12 0.41 0.519 133.62 297.0 27.69 5.53 22.16 0.25 4.37 15.21 84.79
    均值 8.22 0.72 0.34 0.610 143.58 304.8 27.54 7.43 20.11 0.37 6.48 20.10 79.90
    XC21-22 下亚段 Tx47 4.60 0.03 0.28 0.364 173.32 616.8 47.43 29.23 18.19 1.61 3.57 46.42 53.58
    X202-2 Tx48 8.80 0.29 0.26 0.463 149.28 392.1 31.29 10.36 20.93 0.50 7.48 26.59 73.41
    XC31-5 Tx48 1.70 0.03 0.10 0.209 8.82 78.3 10.55 0.01 10.54 0.00 1.18 21.59 78.41
    XC22-9 Tx49 1.90 0.02 0.11 0.100 10.00 6.3 57.43 0.98 46.45 0.02 0.74 20.55 79.45
    XC22-10 Tx49 1.60 0.01 0.10 0.600 10.00 10.0 49.45 0.13 49.32 0.00 0.71 36.34 63.66
    XC23-16 Tx49 4.90 0.38 0.28 0.883 138.29 168.7 23.85 2.94 20.92 0.14 4.09 21.15 78.85
    XC25-8 Tx49 4.70 0.03 0.29 0.100 97.50 10.0 11.43 0.04 11.34 0.00 2.21 11.83 88.17
    XC26-8 Tx49 4.90 0.05 0.26 0.361 123.46 402.6 14.84 0.16 14.67 0.01 3.59 8.55 91.45
    均值 4.07 0.12 0.20 0.390 76.75 152.6 26.98 2.09 24.88 0.10 2.95 24.13 75.87
    下载: 导出CSV

    表  2  四川盆地西部新场地区须家河组四段储层孔隙结构参数评价标准

    Table  2.   Evaluation criteria of pore structure parameters of fourth member of Xujiahe Formation, Xinchang area, western Sichuan Basin

    储集空间类型 类别 物性参数 孔隙结构参数 储层综合评价
    孔隙度/% 渗透率/10-3 μm2 喉道半径/μm 孔隙半径/μm 进汞饱和度/% 孔隙结构指数
    孔隙型 >10 >0.2 >0.411 >155 >20.5 >110
    8~10 0.15~0.20 0.407~0.411 130~155 20.0~20.5 70~110 中等
    6~8 0.05~0.15 0.374~0.407 105~130 16.0~20.0 50~70
    裂缝—孔隙型 >6 >0.35 >0.533 >105 >37.0 >70
    4.5~6 0.15~0.35 0.453~0.533 85~105 26.0~37.0 50~70 中等
    3~4.5 0.05~0.15 0.401~0.453 65~85 19.0~26.0 40~50
    下载: 导出CSV
  • [1] 王为民, 赵刚, 谷长春, 等. 核磁共振岩屑分析技术的实验及应用研究[J]. 石油勘探与开发, 2005, 32(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200501015.htm

    WANG Weimin, ZHAO Gang, GU Changchun, et al. Experiment and application of NMR technology on cuttings[J]. Petroleum Exploration and Development, 2005, 32(1): 56-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200501015.htm
    [2] 冯动军, 周洪瑞, 肖开华, 等. 川西新场地区须二段致密双介质储层特征及有利开发区优选[J]. 现代地质, 2014, 28(3): 626-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201403021.htm

    FENG Dongjun, ZHOU Hongrui, XIAO Kaihua, et al. Characte-ristic of dense dual pore medium reservoir and optimization of the favorable block in the second member of Xujiahe Formation in Xinchang area of western Sichuan[J]. Geoscience, 2014, 28(3): 626-634. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201403021.htm
    [3] 陈国俊, 吕成福, 王琪, 等. 珠江口盆地深水区白云凹陷储层孔隙特征及影响因素[J]. 石油学报, 2010, 31(4): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004007.htm

    CHEN Guojun, LV Chengfu, WANG Qi, et al. Characteristics of pore evolution and its controlling factors of Baiyun Sag in deepwater area of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004007.htm
    [4] TOLEDO P G, SCRIVEN L E, DAVIS H T. Pore-space statistics and capillary pressure curves from volume-controlled porosimetry[J]. SPE Formation Evaluation, 1994, 9(1): 46-54. doi: 10.2118/19618-PA
    [5] 李易隆, 贾爱林, 何东博. 致密砂岩有效储层形成的控制因素[J]. 石油学报, 2013, 34(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301007.htm

    LI Yilong, JIA Ailin, HE Dongbo. Control factors on the formation of effective reservoirs in tight sands: examples from Guang'an and Sulige gasfields[J]. Acta Petrolei Sinica, 2013, 34(1): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301007.htm
    [6] 高辉, 敬晓锋, 张兰. 不同孔喉匹配关系下的特低渗透砂岩微观孔喉特征差异[J]. 石油实验地质, 2013, 35(4): 401-406. doi: 10.11781/sysydz201304401

    GAO Hui, JING Xiaofeng, ZHANG Lan. Difference of micro-pore throat characteristics in extra-low permeability sandstone of different pore throat matching relationship[J]. Petroleum Geology & Experiment, 2013, 35(4): 401-406. doi: 10.11781/sysydz201304401
    [7] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm

    XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
    [8] 王振华, 陈刚, 李书恒, 等. 核磁共振岩心实验分析在低孔渗储层评价中的应用[J]. 石油实验地质, 2014, 36(6): 773-779. doi: 10.11781/sysydz201406773

    WANG Zhenhua, CHEN Gang, LI Shuhen, et al. Application of NMR core experimental analysis in evaluation of low-porosity and low-permeability sandstone reservoirs[J]. Petroleum Geo-logy & Experiment, 2014, 36(6): 773-779. doi: 10.11781/sysydz201406773
    [9] WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273-283. doi: 10.1103/PhysRev.17.273
    [10] 高辉, 解伟, 杨建鹏, 等. 基于恒速压汞技术的特低—超低渗砂岩储层微观孔喉特征[J]. 石油实验地质, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206

    GAO Hui, XIE Wei, YANG Jianpeng, et al. Pore throat characteristics of extra-ultra low permeability sandstone reservoir based on constant-rate mercury penetration technique[J]. Petroleum Geo-logy & Experiment, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206
    [11] 李珊, 孙卫, 王力, 等. 恒速压汞技术在储层孔隙结构研究中的应用[J]. 断块油气田, 2013, 20(4): 485-487. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201304022.htm

    LI Shan, SUN Wei, WANG Li, et al. Application of constant-rate mercury injection technology in reservoir pore structure study[J]. Fault-Block Oil and Gas Field, 2013, 20(4): 485-487. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201304022.htm
    [12] 高永利, 张志国. 恒速压汞技术定量评价低渗透砂岩孔喉结构差异性[J]. 地质科技情报, 2011, 30(4): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104011.htm

    GAO Yongli, ZHANG Zhiguo. Valuation on difference of pore throat structure of low permeability sandstone by Constsp mercury penetration technique[J]. Geological Science and Technology Information, 2011, 30(4): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201104011.htm
    [13] 李卫成, 张艳梅, 王芳, 等. 应用恒速压汞技术研究致密油储层微观孔喉特征: 以鄂尔多斯盆地上三叠统延长组为例[J]. 岩性油气藏, 2012, 24(6): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201206013.htm

    LI Weicheng, ZHANG Yanmei, WANG Fang, et al. Application of constant-rate mercury penetration technique to study of pore throat characteristics of tight reservoir: a case study from the Upper Triassic Yanchang Formation in Ordos Basin[J]. Litho-logic Reservoirs, 2012, 24(6): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201206013.htm
    [14] 赵华伟, 宁正福, 赵天逸, 等. 恒速压汞法在致密储层孔隙结构表征中的适用性[J]. 断块油气田, 2017, 24(3): 413-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703029.htm

    ZHAO Huawei, NING Zhengfu, ZHAO Tianyi, et al. Applicability of rate-controlled porosimetry experiment to pore structure characte-rization of tight oil reservoirs[J]. Fault-Block Oil and Gas Field, 2017, 24(3): 413-416. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201703029.htm
    [15] 刘堂宴, 马在田, 傅容珊. 核磁共振谱的岩石孔喉结构分析[J]. 地球物理学进展, 2003, 18(4): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200304026.htm

    LIU Tangyan, MA Zaitian, FU Rongshan. Analysis of rock pore structure with NMR spectra[J]. Progress in Geophysics, 2003, 18(4): 737-742. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200304026.htm
    [16] 王为民, 郭和坤, 叶朝辉. 利用核磁共振可动流体评价低渗透油田开发潜力[J]. 石油学报, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm

    WANG Weimin, GUO Hekun, YE Chaohui. The evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology[J]. Acta Petrolei Sinica, 2001, 22(6): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200106008.htm
    [17] 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003.

    JIANG Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003.
    [18] 柴毓, 王贵文, 张晓涛, 等. 川中安岳地区须二段致密砂岩储层孔隙结构特征及测井识别[J]. 中南大学学报(自然科学版), 2016, 47(3): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201603015.htm

    CHAI Yu, WANG Guiwen, ZHANG Xiaotao, et al. Pore structure characteristics and logging recognition of tight sandstone reservoir of the second member of Xujiahe Formation in Anyue area, central Sichuan[J]. Journal of Central South University (Science and Technology), 2016, 47(3): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201603015.htm
    [19] 闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法: 以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm

    YAN Jianping, WEN Danni, LI Zunzhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance (NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm
    [20] 陈志海. 特低渗油藏储层微观孔喉分布特征与可动油评价: 以十屋油田营城组油藏为例[J]. 石油实验地质, 2011, 33(6): 657-661. doi: 10.11781/sysydz201106657

    CHEN Zhihai. Distribution feature of micro-pore and throat and evaluation of movable oil in extra-low permeability reservoir: a case study in Yingcheng Formation, Shiwu oil field[J]. Petro-leum Geology & Experiment, 2011, 33(6): 657-661. doi: 10.11781/sysydz201106657
    [21] 高辉, 孙卫, 费二战, 等. 特低—超低渗透砂岩储层微观孔喉特征与物性差异[J]. 岩矿测试, 2011, 30(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102035.htm

    GAO Hui, SUN Wei, FEI Erzhan, et al. The relationship between micro-pore throat characteristics and physical property difference in an extra-ultra low permeability sandstone reservoir[J]. Rock and Mineral Analysis, 2011, 30(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102035.htm
    [22] 王瑞飞, 沈平平, 宋子齐, 等. 特低渗透砂岩油藏储层微观孔喉特征[J]. 石油学报, 2009, 30(4): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904015.htm

    WANG Ruifei, SHEN Pingping, SONG Ziqi, et al. Characteristics of micro-pore throat in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2009, 30(4): 560-563. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200904015.htm
    [23] 高辉, 王美强, 尚水龙. 应用恒速压汞定量评价特低渗透砂岩的微观孔喉非均质性: 以鄂尔多斯盆地西峰油田长8储层为例[J]. 地球物理学进展, 2013, 28(4): 1900-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201304034.htm

    GAO Hui, WANG Meiqiang, SHANG Shuilong. Quantitative evaluation of micro-pore throat heterogeneity in extra-low permeability sandstone using constant rate mercury penetration: taking the Chang8 reservoir of Xifeng oilfield in Ordos Basin[J]. Progress in Geophysics, 2013, 28(4): 1900-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201304034.htm
    [24] 明红霞, 孙卫, 张龙龙, 等. 致密砂岩气藏孔隙结构对物性及可动流体赋存特征的影响: 以苏里格气田东部和东南部盒8段储层为例[J]. 中南大学学报(自然科学版), 2015, 46(12): 4556-4567. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201512024.htm

    MING Hongxia, SUN Wei, ZHANG Longlong, et al. Impact of pore structure on physical property and occurrence characteristics of moving fluid of tight sandstone reservoir: taking He 8 reservoir in the east and southeast of Sulige gas field as an example[J]. Journal of Central South University (Science and Technology), 2015, 46(12): 4556-4567. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201512024.htm
    [25] 王瑞飞, 陈明强. 特低渗透砂岩储层可动流体赋存特征及影响因素[J]. 石油学报, 2008, 29(4): 558-561. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200804016.htm

    WANG Ruifei, CHEN Mingqiang. Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2008, 29(4): 558-561. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200804016.htm
    [26] 李太伟, 郭和坤, 李海波, 等. 应用核磁共振技术研究页岩气储层可动流体[J]. 特种油气藏, 2012, 19(1): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201201027.htm

    LI Taiwei, GUO Hekun, LI Haibo, et al. Research on movable fluids in shale gas reservoirs with NMR technology[J]. Special Oil & Gas Reservoirs, 2012, 19(1): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201201027.htm
    [27] 杨正明, 苗盛, 刘先贵, 等. 特低渗透油藏可动流体百分数参数及其应用[J]. 西安石油大学学报(自然科学版), 2007, 22(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200702024.htm

    YANG Zhengming, MIAO Sheng, LIU Xiangui, et al. Percentage parameter of the movable fluid in ultra-low permeability reservoir and its application[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2007, 22(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY200702024.htm
    [28] 肖开华, 冯动军, 李秀鹏. 川西新场须四段致密砂岩储层微观孔喉与可动流体变化特征[J]. 石油实验地质, 2014, 36(1): 77-82. doi: 10.11781/sysydz201401077

    XIAO Kaihua, FENG Dongjun, LI Xiupeng. Micro pore and throat characteristics and moveable fluid variation of tight sandstone in 4th member of Xujiahe Formation, Xinchang gas field, western Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(1): 77-82. doi: 10.11781/sysydz201401077
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  94
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2021-01-15
  • 刊出日期:  2021-03-28

目录

    /

    返回文章
    返回