留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验

龙祖烈 石创 朱俊章 黄玉平 史玉玲 张小龙

龙祖烈, 石创, 朱俊章, 黄玉平, 史玉玲, 张小龙. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
引用本文: 龙祖烈, 石创, 朱俊章, 黄玉平, 史玉玲, 张小龙. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
LONG Zulie, SHI Chuang, ZHU Junzhang, HUANG Yuping, SHI Yuling, ZHANG Xiaolong. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
Citation: LONG Zulie, SHI Chuang, ZHU Junzhang, HUANG Yuping, SHI Yuling, ZHANG Xiaolong. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507

珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验

doi: 10.11781/sysydz202103507
基金项目: 

国家科技重大专项“珠江口盆地深水区古温压演化与油气生排聚过程” 2016ZX05026-003-006

详细信息
    作者简介:

    龙祖烈(1983-), 男, 硕士, 工程师, 从事油气田勘探开发研究。E-mail: longzl@cnooc.com.cn

  • 中图分类号: TE135

Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin

  • 摘要: 为深入研究珠江口盆地白云凹陷原油裂解机制及产物变化特征,选取了白云凹陷渐新统珠海组原油样品,利用高温高压模拟实验,模拟了地下压力、地下流体介质及半开放条件下、不同升温速率的原油裂解过程,分析了气产率和气体组分特征。研究表明,原油样品在365℃开始裂解,裂解产率随温度增加而增加,在20℃/h的升温速率下,最终(550℃)裂解气体产率、烃气产率和非烃气体产率分别为580.13,394.25,185.88 mg/g;而在60℃/h的升温速率下,最终(550℃)裂解气体产率、烃气产率和非烃气体产率分别为707.68,485.77,221.91 mg/g。不同升温速率下最终产率的差异和烃气的组分差异均与不同温度下原油裂解机制差异有关。从原油裂解成气模拟实验的组分特征来看,大部分原油裂解气具有较高的重烃气含量,而较高重烃含量可作为判识原油裂解气和干酪根裂解气的辅助指标。

     

  • 图  1  原油裂解模拟实验装置流程

    Figure  1.  Experimental device for crude oil cracking simulation

    图  2  珠江口盆地白云凹陷LH16井原油样品裂解烃气产率曲线

    Figure  2.  Cracked hydrocarbon gas yield curves of crude oil samples from well LH16, Baiyun Sag, Pearl River Mouth Basin

    图  3  珠江口盆地白云凹陷LH16井原油在不同裂解温度下的气体组成

    Figure  3.  Gas composition at different cracking temperatures of oil samples from well LH16, Baiyun Sag, Pearl River Mouth Basin

    表  1  原油高温高压裂解模拟实验条件

    Table  1.   Conditions for simulation experiments of crude oil high temperature and high pressure cracking

    实验步骤 温度/℃ 流体压力/MPa 静岩压力/MPa
    模拟点1 250 25 60
    模拟点2 300 30 72
    模拟点3 335 33 79
    模拟点4 365 35 84
    模拟点5 400 38 91
    模拟点6 450 40 96
    模拟点7 500 43 103
    模拟点8 550 45 108
    下载: 导出CSV

    表  2  珠江口盆地白云凹陷LH16井原油裂解气体产率数据

    Table  2.   Cracked gas yields of crude oil samples from well LH16, Baiyun Sag, Pearl River Mouth Basin

    升温速率/(℃·h-1) 温度/℃ 总气体产率/(mg·g-1) 烃气产率(mg·g-1) 非烃气产率/(mg·g-1) 非烃气占比/%
    C1 C2 C3 C1-C5 C2-C5 C3-C5
    20 335 - - - - - - - - -
    365 12.09 0.10 0.08 0.14 0.44 0.34 0.26 11.65 96.36
    400 169.21 13.53 30.43 45.96 144.09 130.56 100.13 25.12 14.85
    450 358.71 53.30 82.64 98.85 291.28 237.98 155.34 67.43 18.80
    500 571.15 114.60 163.50 90.65 460.50 345.90 182.40 110.65 19.37
    550 580.13 120.51 166.75 49.33 394.25 273.74 106.99 185.88 32.04
    60 335 - - - - - - - - -
    365 26.73 3.43 3.71 5.39 16.70 13.27 9.56 10.03 37.52
    400 159.60 24.00 11.74 22.96 84.70 60.70 48.96 74.90 46.93
    450 213.36 31.11 46.03 53.36 154.15 123.04 77.01 59.21 27.75
    500 483.63 86.34 124.49 70.31 344.17 257.83 133.34 139.46 28.84
    550 707.68 164.84 198.20 60.28 485.77 320.93 122.73 221.91 31.36
    下载: 导出CSV
  • [1] 朱明, 张向涛, 黄玉平, 等. 珠江口盆地烃源岩特征及资源潜力[J]. 石油学报, 2019, 40(增刊1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htm

    ZHU Ming, ZHANG Xiangtao, HUANG Yuping, et al. Source rock characteristics and resource potential in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(S1): 53-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S1005.htm
    [2] 米立军, 张忠涛, 庞雄, 等. 南海北部陆缘白云凹陷油气富集规律及主控因素[J]. 石油勘探与开发, 2018, 45(5): 902-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805019.htm

    MI Lijun, ZHANG Zhongtao, PANG Xiong, et al. Main controlling factors of hydrocarbon accumulation in Baiyun Sag at northern continental margin of South China Sea[J]. Petroleum Exploration and Development, 2018, 45(5): 902-913. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805019.htm
    [3] 朱俊章, 施和生, 庞雄, 等. 白云深水区东部油气成因来源与成藏特征[J]. 中国石油勘探, 2012, 17(4): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201204005.htm

    ZHU Junzhang, SHI Hesheng, PANG Xiong, et al. Origins and accumulation characteristics of hydrocarbons in eastern Baiyun deepwater area[J]. China Petroleum Exploration, 2012, 17(4): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201204005.htm
    [4] 李美俊, 张忠涛, 陈聪, 等. 珠江口盆地白云凹陷储层沥青成因及其对油藏调整改造的启示[J]. 石油与天然气地质, 2019, 40(1): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901014.htm

    LI Meijun, ZHANG Zhongtao, CHEN Cong, et al. Origin of reservoir bitumen and its implications for adjustment and reformation of hydrocarbon-accumulation in Baiyuan Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2019, 40(1): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201901014.htm
    [5] 卢晓林, 石宁, 李美俊, 等. 珠江口盆地白云凹陷原油双杜松烷分布特征及地球化学意义[J]. 石油实验地质, 2019, 41(4): 560-568. doi: 10.11781/sysydz201904560

    LU Xiaolin, SHI Ning, LI Meijun, et al. Distribution patterns and geochemical implication of bicadinanes in crude oils from Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2019, 41(4): 560-568. doi: 10.11781/sysydz201904560
    [6] 陈亮, 庞雄, 韩晋阳, 等. 珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J]. 特种油气藏, 2019, 26(1): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901006.htm

    CHEN Liang, PANG Xiong, HAN Jinyang, et al. Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201901006.htm
    [7] 陈中红. 原油裂解成气研究进展[J]. 山东科技大学学报(自然科学版), 2012, 31(3): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201203004.htm

    CHEN Zhonghong. Research progress of oil cracking into gas[J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(3): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201203004.htm
    [8] 侯读杰, 赵增迎, 唐友军, 等. 柯克亚地区原油裂解气的地质-地球化学特征[J]. 天然气地球科学, 2004, 15(2): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200402008.htm

    HOU Dujie, ZHAO Zengying, TANG Youjun, et al. The gelogical and geochemical characteristics of oil cracked gas in Kekeya region, Tarim Basin[J]. Natural Gas Geoscience, 2004, 15(2): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200402008.htm
    [9] 张敏, 黄光辉, 胡国艺, 等. 原油裂解气和干酪根裂解气的地球化学研究(Ⅰ): 模拟实验和产物分析[J]. 中国科学(D辑地球科学), 2008, 38(S2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S2002.htm

    ZHANG Min, HUANG Guanghui, HU Guoyi, et al. Geochemical study on oil-cracked gases and kerogen-cracked gases(Ⅰ)-Experimental simulation and products analysis[J]. Science in China (Series D Earth Sciences), 2009, 52(S1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S2002.htm
    [10] 唐小强, 黄光辉, 张敏, 等. 原油裂解过程中正构烷烃的组成变化特征及其地球化学意义[J]. 地学前缘, 2009, 16(6): 372-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906047.htm

    TANG Xiaoqiang, HUANG Guanghui, ZHANG Min, et al. Compositional characteristics and geochemical significance of n-alkanes in process of crude oil cracking[J]. Earth Science Frontiers, 2009, 16(6): 372-378. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906047.htm
    [11] 陈中红, 张守春, 查明. 压力对原油裂解成气影响的对比模拟实验[J]. 中国石油大学学报(自然科学版), 2012, 36(6): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201206005.htm

    CHEN Zhonghong, ZHANG Shouchun, ZHA Ming. Comparative simulation experiments regarding influence of pressure on crude oil cracking into gas[J]. Journal of China University of Petroleum, 2012, 36(6): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201206005.htm
    [12] 陈中红, 张守春, 查明. 不同压力体系下原油裂解的地球化学演化特征[J]. 中国科学(地球科学), 2013, 43(11): 1807-1818.

    CHEN Zhonghong, ZHANG Shouchun, ZHA Ming. Geochemical evolution during the cracking of crude oil into gas under different pressure systems[J]. Science China (Earth Sciences), 2014, 57(3): 480-490.
    [13] HILL R J, TANG Yongchun, KAPLAN I R. Insights into oil cra-cking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34(12): 1651-1672.
    [14] TIAN Hui, XIAO Xianming, YANG Liguo, et al. Pyrolysis of oil at high temperatures: gas potentials, chemical and carbon isotopic signatures[J]. Chinese Science Bulletin, 2009, 54(7): 1217-1224.
    [15] 田辉, 肖贤明, 李贤庆, 等. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J]. 地球化学, 2007, 36(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200701007.htm

    TIAN Hui, XIAO Xianming, LI Xianqing, et al. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J]. Geochimica, 2007, 36(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200701007.htm
    [16] 高生军, 陈义才, 李延钧, 等. 东营凹陷沙四段原油裂解热模拟实验及产物特征[J]. 天然气地球科学, 2009, 20(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200901009.htm

    GAO Shengjun, CHEN Yicai, LI Yanjun, et al. Pyrolysis on crude oil and characteristics of Sha 4 member cracking gas, Dongying Depression[J]. Natural Gas Geoscience, 2009, 20(1): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200901009.htm
    [17] 郭利果, 肖贤明, 田辉. 原油裂解气与干酪根裂解气差异实验研究[J]. 石油实验地质, 2011, 33(4): 428-436. doi: 10.11781/sysydz201104428

    GUO Liguo, XIAO Xianming, TIAN Hui. Laboratory studies of differences between oil-derived and kerogen maturation gases[J]. Petroleum Geology & Experiment, 2011, 33(4): 428-436. doi: 10.11781/sysydz201104428
    [18] 李贤庆, 仰云峰, 冯松宝, 等. 塔里木盆地原油裂解生烃特征与生气过程研究[J]. 中国矿业大学学报, 2012, 41(3): 397-405. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203012.htm

    LI Xianqing, YANG Yunfeng, FENG Songbao, et al. Characteristics of hydrocarbon and gas generation process from pyrolyzed crude oils in Tarim Basin[J]. Journal of China University of Mining & Technology, 2012, 41(3): 397-405. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201203012.htm
    [19] 刘文汇, 罗厚勇, 腾格尔, 等. 碳酸盐岩储层中原油裂解及碳同位素演化模拟实验[J]. 石油与天然气地质, 2016, 37(5): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605003.htm

    LIU Wenhui, LUO Houyong, TENGER, et al. Simulation experiments on crude oil cracking and carbon isotopic evolution in carbonate reservoirs[J]. Oil & Gas Geology, 2016, 37(5): 627-633. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605003.htm
    [20] 王晓涛, 王铜山, 李永新, 等. 储层介质环境对原油裂解生气影响的实验研究[J]. 地球化学, 2015, 44(2): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502007.htm

    WANG Xiaotao, WANG Tongshan, LI Yongxin, et al. Experimental study on the effects of reservoir mediums on crude oil cracking to gas[J]. Geochimica, 2015, 44(2): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201502007.htm
    [21] 徐陈杰, 叶加仁, 刘金水, 等. 东海西湖凹陷平湖组Ⅲ型干酪根暗色泥岩生排烃模拟[J]. 石油与天然气地质, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm

    XU Chenjie, YE Jiaren, LIU Jinshui, et al. Simulation of hydrocarbon generation and expulsion for the dark mudstone with type-Ⅲ kerogen in the Pinghu Formation of Xihu Sag in East China Sea Shelf Basin[J]. Oil & Gas Geology, 2020, 41(2): 359-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202002013.htm
    [22] 包友书, 张林晔, 张守春, 等. 烃源岩生烃抑制模拟实验及机理[J]. 石油学报, 2017, 38(7): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201707003.htm

    BAO Youshu, ZHANG Linye, ZHANG Shouchun, et al. Simulation experiment and mechanism of hydrocarbon-generation retardation for source rocks[J]. Acta Petrolei Sinica, 2017, 38(7): 753-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201707003.htm
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  95
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2021-04-12
  • 刊出日期:  2021-05-28

目录

    /

    返回文章
    返回