留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩石密闭热释方法评价页岩含油性特征——以四川盆地侏罗系大安寨段为例

罗超 张焕旭 张纪智 石学文 徐志尧 张宇 吴伟

罗超, 张焕旭, 张纪智, 石学文, 徐志尧, 张宇, 吴伟. 岩石密闭热释方法评价页岩含油性特征——以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712
引用本文: 罗超, 张焕旭, 张纪智, 石学文, 徐志尧, 张宇, 吴伟. 岩石密闭热释方法评价页岩含油性特征——以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712
LUO Chao, ZHANG Huanxu, ZHANG Jizhi, SHI Xuewen, XU Zhiyao, ZHANG Yu, WU Wei. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712
Citation: LUO Chao, ZHANG Huanxu, ZHANG Jizhi, SHI Xuewen, XU Zhiyao, ZHANG Yu, WU Wei. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712

岩石密闭热释方法评价页岩含油性特征——以四川盆地侏罗系大安寨段为例

doi: 10.11781/sysydz202204712
基金项目: 

国家自然科学基金青年科学基金项目 41502150

中国石油股份公司重大现场试验项目 2019F-31-01

详细信息
    作者简介:

    罗超(1982—), 男, 博士, 高级工程师, 从事页岩气地质研究。E-mail: luochao2001@petrochina.com.cn

    通讯作者:

    张焕旭(1987—), 男, 博士, 高级工程师, 从事油气成藏及有机地球化学方面的研究。E-mail: hx_zhang@guande-tech.com

  • 中图分类号: TE135

Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin

  • 摘要: 为解决页岩含油性评价受限于游离烃蒸发损失的难题,并考虑页岩含油性评价目的和井场快速分析的需求,在结合井场低温密闭粉碎技术、改进传统岩石热解方法的基础上,建立了一种岩石密闭热释方法定量评价岩石中游离烃含量的方法。对四川盆地侏罗系自流井组大安寨段页岩进行方法对比分析表明,岩石热解方法获得S0值为0.001~0.046 mg/g,S1值为0.165~4.648 mg/g,而密闭热释方法获得S0值为0.026~0.984 mg/g,S1值为0.113~5.989 mg/g;密闭热释方法获得的S1值与岩石热解方法获得的S1值基本相等,而S0值提高了1~2个数量级。通过改进升温程序,井场密闭热释方法分别获得不加热条件下、90℃以前、90~300℃时单位质量岩石中的烃含量,这不仅获得了更加丰富的含油性数据,而且缩短了检测周期,满足了井场快速分析的需求。结合泥浆气测、页岩地化参数、储层流体性质等参数,评价了研究井大安寨段页岩含油量“甜点”,为页岩油含油性评价提供了一种新的实验手段。

     

  • 图  1  井场岩石密闭热释分析系统的构成

    Figure  1.  Composition of in situ sealed thermal release system

    图  2  不同温度段密闭热释烃气相色谱

    Figure  2.  Gas chromatograms of hydrocarbons released at different temperatures

    图  3  四川盆地侏罗系自流井组大安寨段页岩岩石热解和密闭热释S0S1对比

    Figure  3.  Comparisons of S0 and S1 between Rock-Eval and sealed thermal release of Da'anzhai shale, Jurassic Ziliujing Formation, Sichuan Basi

    图  4  四川盆地侏罗系自流井组大安寨段页岩TOC与岩石热解S0和井场密闭热释S0之间的关系

    Figure  4.  Relationship between TOC and S0 by Rock-Eval and sealed thermal release, respectively, of Da'anzhai shale in Jurassic Ziliujing Formation, Sichuan Basin

    图  5  四川盆地侏罗系自流井组大安寨段页岩TOC与岩石热解S1和井场密闭热释S1之间的关系

    Figure  5.  Relationship between TOC and S1 by Rock-Eval and sealed thermal release, respectively, of Da'anzhai shale in Jurassic Ziliujing Formation, Sichuan Basin

    图  6  四川盆地L1井侏罗系自流井组大安寨段含油性综合评价

    Figure  6.  Comprehensive evaluation of oil-content properties of Da'anzhai shale from well L1, Sichuan Basin

    表  1  四川盆地L1井侏罗系大安寨段取心层段岩石热解和井场密闭粉碎热解实验数据对比

    Table  1.   The comparisons of Rock-Eval and in-site sealed thermal release of core samples from Jurassic Da'anzhai member of well L1, Sichuan Basin

    编号 深度/m 岩性1) ω(TOC)/% 岩石热解 井场密闭热释 OSI/(mg·g-1)3) Ro/%4) 可动油量/(mg·g-1)
    S0/(mg·g-1) S1/(mg·g-1) S2/(mg·g-1) Tmax/℃ Sg/(mg·g-1) S0*/(mg·g-1) S0/(mg·g-1)2) S1/(mg·g-1)
    D-1 3 511.01 MS 1.77 0.001 2.333 2.830 465 0.065 0.741 0.806 5.989 384 1.21 5.025
    D-2 3 511.54 MS 1.56 0.034 4.648 4.746 446 0.184 0.801 0.984 5.828 437 0.87 5.252
    D-3 3 511.91 MS 1.28 0.046 2.425 2.444 450 0.148 0.450 0.598 2.835 269 0.94 2.156
    D-4 3 512.56 LS 0.39 0.006 0.364 0.598 458 0.012 0.034 0.046 0.292 86 1.08 0.000
    D-5 3 513.42 LS 1.05 0.001 3.789 4.181 451 0.105 0.331 0.436 2.717 300 0.96 2.103
    D-6 3 514.30 LS 1.34 0.022 2.361 2.412 446 0.070 0.374 0.444 2.601 228 0.87 1.707
    D-7 3 515.51 MS 0.63 0.007 0.763 1.017 463 0.033 0.066 0.099 0.707 127 1.17 0.172
    D-8 3 516.06 MS 0.67 0.003 1.329 1.199 465 0.044 0.309 0.352 1.474 271 1.21 1.152
    D-9 3 517.20 MS 0.86 0.029 0.908 1.548 464 0.059 0.253 0.312 0.977 150 1.19 0.429
    D-10 3 518.17 LS 0.18 0.013 0.165 0.324 448 0.017 0.009 0.026 0.113 77 0.90 0.000
    D-12 3 519.92 LS 0.84 0.001 0.605 1.078 466 0.084 0.247 0.331 1.027 162 1.23 0.521
    D-14 3 521.60 LS 0.71 0.006 0.653 1.077 465 0.074 0.144 0.217 0.606 116 1.21 0.116
    D-15 3 522.07 MS 0.77 0.011 0.522 0.961 462 0.060 0.175 0.235 0.393 81 1.16 0.000
    D-17 3 523.42 MS 0.74 0.001 0.599 0.779 467 0.011 0.126 0.137 0.617 102 1.25 0.015
    D-18 3 524.59 LS 0.88 0.001 1.208 1.430 455 0.052 0.217 0.268 1.335 182 1.03 0.721
    D-19 3 525.70 LS 1.41 0.026 2.321 2.650 462 0.137 0.424 0.561 1.297 132 1.16 0.447
    D-21 3 528.41 MS 0.90 0.011 0.713 0.882 469 0.108 0.260 0.368 0.734 123 1.28 0.203
    D-23 3 530.43 MS 1.04 0.003 0.811 1.112 467 0.079 0.266 0.345 1.214 150 1.25 0.520
    D-25 3 532.88 LS 0.99 0.011 1.007 1.431 468 0.106 0.334 0.440 1.196 166 1.26 0.651
    D-26 3 534.01 MS 1.34 0.022 1.788 1.777 468 0.102 0.376 0.478 1.803 171 1.26 0.944
    D-27 3 535.60 MS 1.54 0.038 2.209 2.750 462 0.125 0.404 0.528 2.939 226 1.16 1.931
    D-31 3 541.30 MS 0.85 0.005 0.623 0.949 466 0.097 0.196 0.294 0.726 120 1.23 0.173
    D-33 3 543.30 MS 1.13 0.027 1.707 1.745 461 0.056 0.285 0.341 1.697 181 1.14 0.909
    D-35 3 545.20 MS 2.27 0.002 1.253 1.929 464 0.110 0.497 0.607 1.818 107 1.19 0.155
    D-37 3 547.39 MS 1.32 0.040 2.549 2.965 461 0.097 0.493 0.591 2.674 248 1.14 1.946
    D-39 3 549.90 MS 1.28 0.017 1.611 1.808 462 0.069 0.306 0.375 2.139 197 1.16 1.238
    D-41 3 552.30 LS 1.43 0.001 1.644 2.492 464 0.132 0.405 0.537 1.151 118 1.19 0.260
    D-42 3 553.70 LS 0.69 0.026 0.361 0.618 474 0.011 0.078 0.089 0.220 45 1.37 0.000
    D-43 3 554.80 MS 0.79 0.001 0.368 0.886 473 0.054 0.158 0.212 0.414 80 1.35 0.000
    1) MS表示泥页岩,LS表示介壳灰岩;
    2)S0=Sg+S0*
    3)OSI基于井场密闭粉碎热释结果计算,OSI=100(Sg+S0*+S1)/ω(TOC);
    4)Ro=0.018Tmax-7.16[14]
    下载: 导出CSV
  • [1] JARVIE D M, COSKEY R J, JOHNSON M S, et al. The geology and geochemistry of the Parshall Field area, Mountrail County, North Dakota[M]//ESTES-JACKSON J E, ANDERSON D S. Revisiting and Revitalizing the Niobrara in the Central Rockies. Denver, Colo: Rocky Mountain Association of Geologists, 2011: 229-281.
    [2] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characte-rization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [3] JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//BREYER J A. Shale reservoirs—giant resources for the 21st century. Tulsa: AAPG, 2012: 89-119.
    [4] 蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849

    JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geoche-mical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849
    [5] 陶国亮, 刘鹏, 钱门辉, 等. 潜江凹陷潜江组盐间页岩含油性及其勘探意义[J]. 中国矿业大学学报, 2019, 48(6): 1256-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm

    TAO Guoliang, LIU Peng, QIAN Menhui, et al. Oil-bearing characteristics and exploration significance of inter-salt shale in Qianjiang Formation, Qianjiang Depression, Jianghan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1256-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm
    [6] 黄振凯, 郝运轻, 李双建, 等. 鄂尔多斯盆地长7段泥页岩层系含油气性与页岩油可动性评价: 以H317井为例[J]. 中国地质, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm

    HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin: a case study of well H317[J]. Geology in China, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm
    [7] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
    [8] 黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [9] ESPITALIÉ J, MARQUIS F, BARSONY I. Geochemical logging[M]//VOORHEES K J. Analytical Pyrolysis-Techniques and Applications. London: Butterworths, 1984: 276-304.
    [10] YASIN G, BHANGER M I, ANSARI T M, et al. Quality and chemistry of crude oils[J]. Journal of Petroleum Technology and Alternative Fuels, 2013, 4(3): 53-63.
    [11] 张葳, 李智武, 冯逢, 等. 川中东北部中—下侏罗统湖相碳酸盐岩碳氧同位素特征及其古环境意义[J]. 古地理学报, 2013, 15(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302011.htm

    ZHANG Wei, LI Zhiwu, FENG Feng, et al. Carbon and oxygen isotopic composition of lacustrine carbonate rocks of the Lower-Middle Jurassic in NE part of central Sichuan Province and their palaeoenvironmental significance[J]. Journal of Palaeogeography, 2013, 15(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302011.htm
    [12] 杜江民, 张小莉, 张帆, 等. 川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测[J]. 古地理学报, 2015, 17(4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504006.htm

    DU Jiangmin, ZHANG Xiaoli, ZHANG Fan, et al. Sedimentary facies and reservoir prediction of the Lower Jurassic Da'anzhai Member, Longgang area, central Sichuan Basin[J]. Journal of Palaeogeography, 2015, 17(4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504006.htm
    [13] 王拥军, 童敏, 孙圆辉, 等. 四川盆地大安寨段介壳灰岩致密油储层特征[J]. 石油学报, 2019, 40(1): 42-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901003.htm

    WANG Youjun, TONG Min, SUN Yuanhui, et al. Reservoir characte-ristics of Da'anzhai shell limestone tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(1): 42-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901003.htm
    [14] JARVIE D M, CLAXTON B L, HENK F, et al. Oil and shale gas from the Barnett shale, Ft. Worth Basin, Texas[C]//AAPG National Convention. Denver: AAPG, 2001.
    [15] SIMA Liqiang, WU Feng, MA Jianhai, et al. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: a case study of the Yingdong Oil/Gas Field in the Qaidam Basin[J]. Natural Gas Industry B, 2014, 1(2): 172-177.
    [16] YANG Tao, ARIEF I H, NIEMANN M, et al. Reservoir fluid data acquisition using advanced mud logging gas in shale reservoirs[C]//Unconventional Resources Technology Conference. Denver: Society of Exploration Geophysicists, 2019.
    [17] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin Heidelberg: Spinger-Verlag, 1984: 518.
    [18] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  121
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2022-06-13
  • 刊出日期:  2022-07-28

目录

    /

    返回文章
    返回