留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断控气藏的动态成藏物理模拟与启示——以柴达木盆地西北地区典型气藏为例

罗群 王仕琛 贾春 代兵 张宏利 文璠 邱兆轩

罗群, 王仕琛, 贾春, 代兵, 张宏利, 文璠, 邱兆轩. 断控气藏的动态成藏物理模拟与启示——以柴达木盆地西北地区典型气藏为例[J]. 石油实验地质, 2022, 44(5): 790-803. doi: 10.11781/sysydz202205790
引用本文: 罗群, 王仕琛, 贾春, 代兵, 张宏利, 文璠, 邱兆轩. 断控气藏的动态成藏物理模拟与启示——以柴达木盆地西北地区典型气藏为例[J]. 石油实验地质, 2022, 44(5): 790-803. doi: 10.11781/sysydz202205790
LUO Qun, WANG Shichen, JIA Chun, DAI Bing, ZHANG Hongli, WEN Fan, QIU Zhaoxuan. Physical simulation of dynamic accumulation of fault-controlled gas reservoirs and its implications: a case study of typical gas reservoirs in northwestern part of Qaidam Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 790-803. doi: 10.11781/sysydz202205790
Citation: LUO Qun, WANG Shichen, JIA Chun, DAI Bing, ZHANG Hongli, WEN Fan, QIU Zhaoxuan. Physical simulation of dynamic accumulation of fault-controlled gas reservoirs and its implications: a case study of typical gas reservoirs in northwestern part of Qaidam Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 790-803. doi: 10.11781/sysydz202205790

断控气藏的动态成藏物理模拟与启示——以柴达木盆地西北地区典型气藏为例

doi: 10.11781/sysydz202205790
基金项目: 

中国石油—中国石油大学(北京)战略合作科技专项 ZLZX2020016

详细信息
    作者简介:

    罗群(1963-), 男, 博士, 教授, 从事非常规油气成藏与地质评价研究。E-mail: luoqun2002@263.net

  • 中图分类号: TE122.3

Physical simulation of dynamic accumulation of fault-controlled gas reservoirs and its implications: a case study of typical gas reservoirs in northwestern part of Qaidam Basin

  • 摘要: 天然气成藏过程的动态物理模拟是揭示天然气运聚成藏机理、总结其分布规律的重要手段,然而由于天然气本身特性,使得“易泄漏、难动态、难观察”成为天然气运聚动态成藏物理模拟的最大问题。为了揭示断控气藏运聚成藏机制,总结其气藏形成序列和分布模式,以柴达木盆地西北地区东坪、马海—南八仙典型气藏为例,在建立各个典型气藏成藏演化地质模式基础上,针对气藏模拟存在的问题,设计了既能实现构造动态变化过程,同时又能清晰观察气体充注、运移、聚集现象的“一种可调式天然气运聚成藏模拟装置”。运用该装置成功模拟了东坪、马海—南八仙等典型气藏形成过程,明确了断层不仅作为气体运移和传递动力的通道,还控制了演化序列和分布模式;建立了“晚期成藏”和“长期成藏”两种不同类型天然气藏的形成演化序列模式,揭示了“断传高压驱动”天然气运移成藏机理,明确“深浅共存、浅差深好”的天然气藏纵向保存系列,提出了“有浅(浅层气藏)必有深(深层气藏)”,据“浅”寻找“深”的天然气勘探新理念。

     

  • 图  1  柴达木盆地西部和西北地区Tr断裂与侏罗系烃源岩、气藏分布

    据青海油田资料(2011年)修改。

    Figure  1.  Distribution of Tr fault and Jurassic source rocks and gas reservoirs in western and northwestern Qaidam Basin

    图  2  柴达木盆地东坪构造天然气运移成藏模式

    Figure  2.  Migration and accumulation model of natural gas in Dongping structure, Qaidam Basin

    图  3  柴达木盆地马海—南八仙油气藏油气运聚成藏模式

    据青海油田资料(2011年)修改。

    Figure  3.  Migration and accumulation model of oil and gas in Mahai-Nanbaxian reservoir, Qaidam Basin

    图  4  手动非均匀挤压天然气运聚动态成藏物理模拟实验装置照片(背视)

    Figure  4.  Experimental device for physical simulation of natural gas migration and dynamic accumulation with manual and non-uniform extrusion (back view)

    图  5  气藏模拟实验装置实物图及几何尺寸示意

    Figure  5.  Experimental device for gas reservoir simulation and its schematic diagram

    图  6  手动非均匀挤压天然气运聚动态成藏物理模拟实验装置示意(正面)

    Figure  6.  Experimental device for physical simulation of natural gas migration and dynamic accumulation with manual and non-uniform extrusion (front view)

    图  7  柴达木盆地东坪气藏形成演化模式

    Figure  7.  Formation and evolution model of Dongping gas reservoir in Qaidam Basin

    图  8  柴达木盆地东坪构造气藏形成过程物理模拟实验模型

    Figure  8.  Experimental model for physical simulation of formation process of Dongping structural gas reservoir, Qaidam Basin

    图  9  缓慢挤压逐渐加速注气阶段(时间在0~11′48″)实验现象示意

    Figure  9.  Schematic diagram of experimental phenomenon during the stage of slow extrusion and gradually speeding gas injection (0-11′48″)

    图  10  实验在缓慢注气9′56″和11′48″时刻天然气沿断裂运聚成藏的实验照片

    Figure  10.  Experimental photos of natural gas migration and accumlation along faults during slow gas injection at 9 ′56″ and 11′48″

    图  11  加速挤压大量注气阶段(时间大致在11′48″~13′20″)实验现象示意

    Figure  11.  Schematic diagram of experimental phenomenon during the stage of speeding extrusion with large amount of gas injection (approximately 11′48″-13′20″)

    图  12  柴达木盆地南八仙油气藏形成史示意

    Figure  12.  Formation history of Nanbaxian oil and gas reservoir in Qaidam Basin

    图  13  柴达木盆地马仙构造气藏形成过程物理模拟实验模型

    Figure  13.  Experimental model for physical simulation of formation process of Maxian structural gas reservoir in Qaidam Basin

    图  14  缓慢挤压逐渐加速注气阶段(时间大致从0′~8′)实验现象示意

    Figure  14.  Schematic diagram of experimental phenomenon during the stage of slow extrusion and gradually speeding gas injection (roughly from 0′ to 8′)

    图  15  加速挤压大量注气阶段(时间大致从11′~20′)实验现象照片

    Figure  15.  Experimental photos of speeding extrusion and mass gas injection stage (roughly from 11′ to 20′)

    表  1  柴达木盆地东坪气藏动态成藏物理模拟实验参数设定

    Table  1.   Parameter setting of physical simulation experiment for dynamic accumulation of Dongping gas reservoir in Qaidam Basin

    实验参数 65.5~23.5 Ma(第一阶段)E 23.5~5.3 Ma(第二阶段)N1 5.3.0 ~0 Ma(第三阶段)N2—Q
    实验过程初步设定 缓慢挤压 缓慢挤压逐渐加速注气阶段 加速挤压大量注气阶段
    地史时间差/Ma 0 18.2,23.5
    实验时间设定/min 0 9.1,11.8
    预期压缩距离/mm 10 50
    预期压缩速率/(mm·min-1) 0.55 18.5
    进气量 少量 大量
    下载: 导出CSV

    表  2  柴达木盆地马海西—南八仙气藏物理模拟实验参数设定

    Table  2.   Parameter setting of physical simulation experiment for Western Mahai-Nanbaxian gas reservoirs in Qaidam Basin

    实验参数 65.5~23.5 Ma(第一阶段)E 23.5~3.0 Ma(第二阶段)N1—N22 3.0~0 Ma(第三阶段)N23—Q
    实验过程初步设定 缓慢挤压 缓慢挤压逐渐加速注气阶段 加速挤压大量注气阶段
    地史时间差/Ma 0 20.5,23.5
    实验时间预期设定/min 0 8.0,22.0
    预期压缩距离/mm 10 22
    预期压缩速率/(mm·min-1) 0.8 1.57
    进气量 少量 大量
    下载: 导出CSV
  • [1] 卢家烂, 傅家谟, 张惠之, 等. 不同条件下天然气运移影响的模拟实验研究[J]. 石油与天然气地质, 1991, 12(2): 153-160.

    LU Jialan, FU Jiamo, ZHANG Huizhi, et al. Study on simulation of natural gas migration in different conditions[J]. Oil & Gas Geology, 1991, 12(2): 153-160.
    [2] 卢双舫, 赵锡嘏, 黄第藩, 等. 煤成烃的生成和运移的模拟实验研究Ⅰ. 气态和液态产物特征及其演化[J]. 石油实验地质, 1994, 16(3): 290-302. doi: 10.11781/sysydz199403290

    LU Shuangfang, ZHAO Xigu, HUANG Difan, et al. Modelling experiments on the generation and migration of coal-derived hydrocarbons: I. The chakacteristics of gaseous and liquid hydrodarbon products and their evolutions[J]. Experimental Petroleum Ceology, 1994, 16(3): 290-302. doi: 10.11781/sysydz199403290
    [3] 李剑, 王晓波, 魏国齐, 等. 天然气基础地质理论研究新进展与勘探领域[J]. 天然气工业, 2018, 38(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804007.htm

    LI Jian, WANG Xiaobo, WEI Guoqi, et al. New progress in basic natural gas geological theories and future exploration targets in China[J]. Natural Gas Industry, 2018, 38(4): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804007.htm
    [4] 金之钧, 张金川. 天然气成藏的二元机理模式[J]. 石油学报, 2003, 24(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304003.htm

    JIN Zhijun, ZHANG Jinchuan. Two typical types of mechanisms and models for gas accumulations[J]. Acta Petrolei Sinica, 2003, 24(4): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200304003.htm
    [5] 刘吉余, 王明明, 李景明. 天然气运聚成藏过程模拟研究现状[J]. 天然气工业, 2006, 26(7): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200607008.htm

    LIU Jiyu, WANG Mingming, LI Jingming. Status of simulation study of gas migration and accumulation process[J]. Natural Gas Industry, 2006, 26(7): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200607008.htm
    [6] 史基安, 卢龙飞, 王金鹏, 等. 天然气运移物理模拟实验及其结果[J]. 天然气工业, 2004, 24(12): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200412010.htm

    SHI Ji'an, LU Longfei, WANG Jinpeng, et al. Physical modeling tests and results of natural gas migration[J]. Natural Gas Industry, 2004, 24(12): 32-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200412010.htm
    [7] 史基安, 孙秀建, 王金鹏, 等. 天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J]. 石油实验地质, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293

    SHI Jian, SUN Xiujian, WANG Jinpeng, et al. Physical simulating experiment of natural gas migration and its characteristics of composition differentiation and carbon isotope fractionation[J]. Petroleum Geology & Experiment, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293
    [8] 张洪, 庞雄奇, 姜振学. 物理模拟实验在天然气成藏研究中的应用: 以柴达木盆地北缘南八仙和马海气田成藏过程为例[J]. 地质论评, 2004, 50(6): 644-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406013.htm

    ZHANG Hong, PANG Xiongqi, JIANG Zhenxue. Physical simulation experiment study on the natural gas accumulation: a case study of Nanbaxian and Mahai gas field accumulation[J]. Geological Review, 2004, 50(6): 644-648. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200406013.htm
    [9] 姜林, 洪峰, 柳少波, 等. 油气二次运移过程差异物理模拟实验[J]. 天然气地球科学, 2011, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htm

    JIANG Lin, HONG Feng, LIU Shaobo, et al. Physical simulation of oil and natural gas secondary migration[J]. Natural Gas Geoscience, 2011, 22(5): 784-788. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201105006.htm
    [10] 公言杰, 柳少波, 姜林, 等. 油气二次运移可视化物理模拟实验技术研究进展[J]. 断块油气田, 2014, 21(4): 548-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404013.htm

    GONG Yanjie, LIU Shaobo, JIANG Lin, et al. Research progress in visual physical simulation experiment technology of secondary hydrocarbon migration[J]. Fault-Block Oil and Gas Field, 2014, 21(4): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201404013.htm
    [11] MUNN M J. Studies in the application of the anticlinal theory of oil and gas accumulation[J]. Economic Geology, 1909, 4(2): 141-157.
    [12] EMMONS W H. Experiments on accumulation of oil in sands[J]. AAPG Bulletin, 1921, 5(1): 103-104.
    [13] HUBBERT M K. Entrapment of petroleum under hydrodynamic conditions[J]. AAPG Bulletin, 1953, 37(8): 1954-2026.
    [14] HILL V G. Geochemical prospecting for nickel in the Blue Mountain area, Jamaica, W.I. [J]. Economic Geology, 1961, 56(6): 1025-1032.
    [15] LENORMAND R, TOUBOUL E, ZARCONE C. Numerical models and experiments on immiscible displacements in porous media[J]. Journal of Fluid Mechanics, 1988, 189: 165-187.
    [16] DEMBICKI H JR, ANDERSON M J. Secondary migration of oil: experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J]. AAPG Bulletin, 1989, 73(8): 1018-1021.
    [17] LIONEL C, FU X W, IOANNIS C, et al. An experimental study of secondary oil migration[J]. AAPG Bulletin, 1992, 76(5): 638-650.
    [18] 米敬奎, 张水昌, 李新虎. 深盆气藏形成机理实验模拟[J]. 天然气地球科学, 2005, 16(3): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503009.htm

    MI Jingkui, ZHANG Shuichang, LI Xinhu. Experimental simulation for the forming mechanism of deep basin gas trap[J]. Natural Gas Geoscience, 2005, 16(3): 302-305. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200503009.htm
    [19] 陈义才, 王波, 张胜, 等. 苏里格地区盒8段天然气充注成藏机理与成藏模式探讨[J]. 石油天然气学报, 2010, 32(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201004004.htm

    CHEN Yicai, WANG Bo, ZHANG Sheng, et al. The discussion of mechanism and pattern of hydrocarbon accumulation of gas-filling in Sulige region of the 8 member of Xiashihezi Formation[J]. Journal of Oil and Gas Technology, 2010, 32(4): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201004004.htm
    [20] 姜振学, 庞雄奇, 曾溅辉, 等. 油气优势运移通道的类型及其物理模拟实验研究[J]. 地学前缘, 2005, 12(4): 507-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htm

    JIANG Zhenxue, PANG Xiongqi, ZENG Jianhui, et al. Research on types of the dominant migration pathways and their physical simulation experiments[J]. Earth Science Frontiers, 2005, 12(4): 507-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200504026.htm
    [21] 罗晓容, 孙盈, 汪立群, 等. 柴达木盆地北缘西段油气成藏动力学研究[J]. 石油勘探与开发, 2013, 40(2): 159-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302003.htm

    LUO Xiaorong, SUN Ying, WANG Liqun, et al. Dynamics of hydrocarbon accumulation in the west section of the northern margin of the Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2013, 40(2): 159-170. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302003.htm
    [22] 曾旭, 李剑, 田继先, 等. 柴达木盆地腹部晚期构造带成藏模拟实验研究[J]. 天然气地球科学, 2018, 29(9): 1301-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809008.htm

    ZENG Xu, LI Jian, TIAN Jixian, et al. Physical simulation experimental study on gas accumulation in the late tectonic belts of the northern border of Qaidam Basin[J]. Natural Gas Geoscience, 2018, 29(9): 1301-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201809008.htm
    [23] 郑定业, 庞雄奇, 姜福杰, 等. 鄂尔多斯盆地临兴地区上古生界致密气成藏特征及物理模拟[J]. 石油与天然气地质, 2020, 41(4): 744-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004009.htm

    ZHENG Dingye, PANG Xiongqi, JIANG Fujie, et al. Characteristics and physical simulation of the Upper Paleozoic tight gas accumulation in Linxing area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(4): 744-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202004009.htm
    [24] 高树生, 刘华勋, 叶礼友, 等. 页岩与致密砂岩气井产气机理及生产动态模拟对比[J]. 天然气地球科学, 2021, 32(1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101010.htm

    GAO Shusheng, LIU Huaxun, YE Liyou, et al. A comparative study on production mechanism & dynamics simulation of tight sandstone and shale gas well[J]. Natural Gas Geoscience, 2021, 32(1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202101010.htm
    [25] 田建华, 董清源, 刘军. 柴西地区古近系—新近系天然气成藏条件分析及目标优选[J]. 特种油气藏, 2021, 28(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101004.htm

    TIAN Jianhua, DONG Qingyuan, LIU Jun. Analysis on accumulation conditions and target optimization of Paleogene-Neogene gas reservoirs in western Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202101004.htm
    [26] 李清山, 郭少斌, 侯泽生, 等. 柴达木盆地上新世狮子沟期古气候演化与层序地层[J]. 石油实验地质, 2020, 42(1): 28-36. doi: 10.11781/sysydz202001028

    LI Qingshan, GUO Shaobin, HOU Zesheng, et al. Palaeoclimate evolution and sequence stratigraphy during Pliocene Shizigou stage, Qaidam Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 28-36. doi: 10.11781/sysydz202001028
    [27] 舒豫川, 胡广, 庞谦, 等. 柴达木盆地咸湖相烃源岩特征: 以英西地区下干柴沟组上段为例[J]. 断块油气田, 2021, 28(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102008.htm

    SHU Yuchuan, HU Guang, PANG Qian, et al. Characteristics of source rocks of salt lake facies in Qaidam Basin: taking upper member of Xiaganchaigou Formation in Yingxi region as an example[J]. Fault-Block Oil and Gas Field, 2021, 28(2): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202102008.htm
    [28] 伍劲, 刘占国, 朱超, 等. 柴达木盆地西部下干柴沟组下段碎屑岩储层物性差异主控因素分析[J]. 油气地质与采收率, 2021, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104006.htm

    WU Jin, LIU Zhanguo, ZHU Chao, et al. Main controlling factors of clastic reservoir property difference of Lower Ganchaigou Formation in western Qaidam Basin[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(4): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202104006.htm
    [29] 王琳霖, 于冬冬, 浮昀, 等. 柴达木盆地西部构造演化与差异变形特征及对油田水分布的控制[J]. 石油实验地质, 2020, 42(2): 186-192. doi: 10.11781/sysydz202002186

    WANG Linlin, YU Dongdong, FU Yun, et al. Tectonic evolution and differential deformation controls on oilfield water distribution in western Qaidam Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 186-192. doi: 10.11781/sysydz202002186
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  64
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2022-08-30
  • 刊出日期:  2022-09-28

目录

    /

    返回文章
    返回