留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律

李姗姗 白斌 严刚 徐耀辉 刘岩

李姗姗, 白斌, 严刚, 徐耀辉, 刘岩. 泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律[J]. 石油实验地质, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887
引用本文: 李姗姗, 白斌, 严刚, 徐耀辉, 刘岩. 泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律[J]. 石油实验地质, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887
LI Shanshan, BAI Bin, YAN Gang, XU Yaohui, LIU Yan. Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887
Citation: LI Shanshan, BAI Bin, YAN Gang, XU Yaohui, LIU Yan. Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(5): 887-895. doi: 10.11781/sysydz202205887

泥页岩热模拟排出油与滞留油中17α(H)-重排藿烷的成熟度指示规律

doi: 10.11781/sysydz202205887
基金项目: 

国家自然科学基金项目 41972122

国家自然科学基金项目 42072186

详细信息
    作者简介:

    李姗姗(1991-), 女, 硕士研究生, 研究方向为有机地球化学。E-mail: 522197462@qq.com

    通讯作者:

    白斌(1981-), 男, 博士, 高级工程师, 从事沉积储层地质学研究。E-mail: baibin81@petrochina.com.cn

  • 中图分类号: TE122.11

Maturity indication of 17α(H)-diahopane in expelled and retained oils from artificial maturation experiments of mud shale

  • 摘要: 在沉积有机相接近的前提条件下,重排藿烷的相对丰度与热成熟度密切相关。选用鄂尔多斯盆地低熟(Ro为0.58%)富有机质(总有机碳含量为3.87%)泥页岩进行生排烃热模拟实验,通过气相色谱—质谱(GC-MS)对排出油和滞留油中17α(H)-重排藿类化合物进行了检测与分析,并结合热模拟残余岩样的实测镜质体随机反射率(Ro)界定了17α(H)-重排藿烷参数作为成熟度指标的适用范围。结果表明,无论在排出油还是滞留油中,参数C29*/(C29*+C29H)和C30*/(C30*+C30H)呈现出类似的三段式变化特征,均随实验温度的升高先降低后升高最后降低,表明两个参数可能是较好的油源对比指标。在325 ℃之前,即Ro<1.01%时,参数变化幅度均不明显;但在325~385 ℃之间,两个参数均随温度的升高呈现显著的上升趋势,表明在有机质成熟中期—高成熟早期阶段(1.01%<Ro<1.48%)两个参数均可作为有效的成熟度指标。

     

  • 图  1  热模拟原始样品二氯甲烷抽提物中规则藿烷与重排藿烷化合物质量色谱图

    Figure  1.  Mass chromatograms of regular and rearranged hopane compounds in dichloromethane extracts of original samples

    图  2  不同温度点热模拟排出油和滞留油饱和烃m/z 191质量色谱图

    1.C2718α(H), 21β(H)-22, 29, 30-三降新藿烷(Τs); 2.C2717α(H)-22, 29, 30-三降藿烷(Τm);3.C2917α(H)-重排藿烷(C29*);4. C2917α(H), 21β(H)-30-降藿烷(C29H);5.C2918α(H), 21β(H)-30-降新藿烷(C29Τs);6.C3017α(H)-重排藿烷(C30*);7.C3017α(H), 21β(H)-藿烷(C30H);8.C3017α(H), 21β(H)-29-升藿烷(C31H);9.伽马蜡烷(G)

    Figure  2.  m/z 191 mass chromatograms of saturates in expelled and retained oils at different temperatures

    图  3  热模拟排出油(a,b)和滞留油(c,d)中C29*、C29H、C30*、C30H相对丰度的变化特征

    Figure  3.  Characteristics of relative abundances of C29*, C29H, C30* and C30H in expelled (a, b) and retained (c, d) oils for pyrolysis experiments

    图  4  热模拟排出油和滞留油中重排藿烷成熟度参数随温度的变化特征

    Figure  4.  Temperature vs. maturity parameters of rearranged hopane in expelled and retained oils for pyrolysis experiments

    图  5  17α(H)-重排藿烷参数与重排甾烷及Ts/Tm成熟度参数的相互关系

    Figure  5.  Relationship between rearranged hopane and sterane maturity parameters and Ts/Tm

    表  1  热模拟实验条件及残余岩样实测镜质体反射率

    Table  1.   Experimental conditions and vitrinite reflectance values of pyrolysis residual rocks

    模拟温度/℃ 地层压力/MPa 静岩压力/MPa 样品质量/g 实测Ro/%
    280 21.00 50.00 60.15 0.70
    325 23.00 55.00 58.30 1.01
    355 28.00 67.00 60.31 1.34
    385 33.00 79.00 55.13 1.48
    445 39.00 94.00 56.35 1.95
    下载: 导出CSV

    表  2  不同温度热模拟排出油和滞留油中规则藿烷与重排藿烷相对丰度及相关参数

    Table  2.   Relative abundances and parameters of regular and rearranged hopane in expelled and retained oils of pyrolysis at different temperatures

    温度/
    C29*/% C30*/% C29H/% C30H/% C30*/C30H C29*/(C29*+C29H) C30*/(C30*+C30H)
    排出油 原样 2.52 3.20 27.07 67.22 0.05 0.09 0.05
    280 2.98 3.38 34.05 59.59 0.06 0.08 0.05
    325 3.23 3.20 30.76 62.81 0.05 0.07 0.05
    355 2.85 3.86 33.93 59.36 0.07 0.08 0.06
    385 3.89 4.16 34.50 57.44 0.07 0.10 0.07
    445 3.09 3.40 35.50 58.02 0.06 0.08 0.06
    滞留油 280 2.37 3.32 27.67 66.64 0.05 0.08 0.05
    325 1.80 2.96 30.13 65.12 0.05 0.06 0.04
    355 2.37 3.31 38.64 55.69 0.06 0.06 0.06
    385 7.25 5.19 38.59 48.97 0.11 0.16 0.10
    445 3.84 4.75 40.45 50.95 0.09 0.09 0.09
    下载: 导出CSV
  • [1] MOLDOWAN J M, FAGO F J, CARLSON R M K, et al. Rearranged hopanes in sediments and petroleum[J]. Geochimica et Cosmochimica Acta, 1991, 55(11): 3333-3353. doi: 10.1016/0016-7037(91)90492-N
    [2] 盛国英, 卢鸿, 廖晶, 等. 地质体中藿烷类新化合物研究进展[J]. 地球化学, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htm

    SHENG Guoying, LU Hong, LIAO Jing, et al. Advances on novel hopanoids present in geological bodies[J]. Geochimica, 2019, 48(5): 421-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201905001.htm
    [3] SMITH G W. The crystal and molecular structure of 22, 29, 30-trisnorhopane Ⅱ, C27H46[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1975, B31(2): 522-526.
    [4] KILLOPS S D, HOWELL V J. Complex series of pentacyclic triterpanes in a lacustrine sourced oil from Korea Bay Basin[J]. Chemical Geology, 1991, 91(1): 65-79. doi: 10.1016/0009-2541(91)90016-K
    [5] NYTOFT H P, LUTNÆS B F, JOHANSEN J E. 28-Nor-sper-gulanes, a novel series of rearranged hopanes[J]. Organic Geochemistry, 2006, 37(7): 772-786. doi: 10.1016/j.orggeochem.2006.03.005
    [6] NYTOFT H P, LUND K, JØRGENSEN T K C, et al. Identification of an early-eluting rearranged hopane series. Synthesis from hop-17(21)-enes and detection of intermediates in sediments[C]//Proceedings of the 23rd International Meeting on Organic Geochemistry. Torquay, 2007: 9-14.
    [7] ARMANIOS C, ALEXANDER R, KAGI R I. High diahopane and neohopane abundances in a biodegraded crude oil from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1992, 18(5): 641-645. doi: 10.1016/0146-6380(92)90089-G
    [8] TELNAES N, ISAKSEN G H, FARRIMOND P. Unusual triterpane distributions in lacustrine oils[J]. Organic Geochemistry, 1992, 18(6): 785-789. doi: 10.1016/0146-6380(92)90047-2
    [9] FARRIMOND P, TELNÆS N. Three series of rearranged hopanes in Toarcian sediments (northern Italy)[J]. Organic Geochemistry, 1996, 25(3/4): 165-177.
    [10] 肖中尧, 黄光辉, 卢玉红, 等. 库车坳陷却勒1井原油的重排藿烷系列及油源对比[J]. 石油勘探与开发, 2004, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm

    XIAO Zhongyao, HUANG Guanghui, LU Yuhong, et al. Rearranged hopanes in oils from the Quele 1 well, Tarim Basin, and the significance for oil correlation[J]. Petroleum Exploration and Development, 2004, 31(2): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200402008.htm
    [11] ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. The Xiamaling oil shale generated through Rhodophyta over 800 Ma ago[J]. Science in China Series D: Earth Sciences, 2007, 50(4): 527-535. doi: 10.1007/s11430-007-0012-1
    [12] LI Meijun, WANG Tieguan, LIU Ju, et al. Biomarker 17α(H)-diahopane: a geochemical tool to study the petroleum system of a Tertiary lacustrine basin, northern South China Sea[J]. Applied Geochemistry, 2009, 24(1): 172-183. doi: 10.1016/j.apgeochem.2008.09.016
    [13] 张敏. 地质体中高丰度重排藿烷类化合物的成因研究现状与展望[J]. 石油天然气学报, 2013, 35(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201309001.htm

    ZHANG Min. Research and prospects of genesis of high abundant rearranged hopanes in geological bodies[J]. Journal of Oil and Gas Technology, 2013, 35(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201309001.htm
    [14] JIANG Lian, ZHANG Min. Geochemical characteristics and significances of rearranged hopanes in hydrocarbon source rocks, Songliao Basin, NE China[J]. Journal of Petroleum Science and Engineering, 2015, 131: 138-149. doi: 10.1016/j.petrol.2015.04.035
    [15] YANG Weiwei, LIU Guangdi, FENG Yuan. Geochemical significance of 17α(H)-diahopane and its application in oil-source correlation of Yanchang Formation in Longdong area, Ordos Basin, China[J]. Marine and Petroleum Geology, 2016, 71: 238-249. doi: 10.1016/j.marpetgeo.2015.10.016
    [16] VOLKMAN J K, ALEXANDER R, KAGI R I, et al. A geochemical reconstruction of oil generation in the Barrow Sub-basin of western Australia[J]. Geochimica et Cosmochimica Acta, 1983, 47(12): 2091-2105. doi: 10.1016/0016-7037(83)90034-0
    [17] PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1/3): 73-84.
    [18] ROHMER M, OURISSON G. Unsaturated bacteriohopanepolyols from Acetobacter aceti ssp. xylinum[J]. Journal of Chemical Research Synopses (Print), 1986(10): 356-357.
    [19] TALBOT H M, ROHMER M, FARRIMOND P. Structural characterisation of unsaturated bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectro-metry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(10): 1613-1622. doi: 10.1002/rcm.2997
    [20] SEIFERT W K, MOLDOWAN J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 77-95. doi: 10.1016/0016-7037(78)90219-3
    [21] LU Xiaolin, LI Meijun, WANG Xiaojuan, et al. Distribution and geochemical significance of rearranged hopanes in Jurassic source rocks and related oils in the center of the Sichuan Basin, China[J]. ACS Omega, 2021, 6(21): 13588-13600. doi: 10.1021/acsomega.1c00252
    [22] 张敏, 李谨, 陈菊林. 热力作用对烃源岩中重排藿烷类化合物形成的作用[J]. 沉积学报, 2018, 36(5): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201805017.htm

    ZHANG Min, LI Jin, CHEN Julin. Thermal effect on the distribution of rearranged hopanes in hydrocarbon source rocks[J]. Acta Sedimentologica Sinica, 2018, 36(5): 1033-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201805017.htm
    [23] JIANG Lian, GEORGE S C, ZHANG Min. The occurrence and distribution of rearranged hopanes in crude oils from the Lishu Depression, Songliao Basin, China[J]. Organic Geochemistry, 2018, 115: 205-219. doi: 10.1016/j.orggeochem.2017.11.007
    [24] XIAO Hong, LI Meijun, WANG Wenqiang, et al. Identification, distribution and geochemical significance of four rearranged hopane series in crude oil[J]. Organic Geochemistry, 2019, 138: 103929. doi: 10.1016/j.orggeochem.2019.103929
    [25] WANG Yaoping, ZHAN Xin, GAO Yuan, et al. Geochemical signatures and controlling factors of rearranged hopanes in source rocks and oils from representative basins of China[J]. ACS Omega, 2020, 5(46): 30160-30167. doi: 10.1021/acsomega.0c04615
    [26] KOLACZKOWSKA E, SLOUGUI N E, WATT D S, et al. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations[J]. Organic Geochemistry, 1990, 16(4/6): 1033-1038.
    [27] 王春江, 傅家谟, 盛国英, 等. 18α(H)-新藿烷及17α(H)-重排藿烷类化合物的地球化学属性与应用[J]. 科学通报, 2000, 45(13): 1366-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200013002.htm

    WANG Chunjiang, FU Jiamo, SHENG Guoying, et al. Geochemical characteristics and applications of 18α(H)-neohopanes and l7α(H)-diahopanes[J]. Chinese Science Bulletin, 2000, 45(19): 1742-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200013002.htm
    [28] 陈菊林, 张敏. 烃源岩热模拟实验中重排藿烷类化合物变化特征及其意义[J]. 石油实验地质, 2016, 38(5): 672-678. doi: 10.11781/sysydz201605672

    CHEN Julin, ZHANG Min. Features and significance of rearranged hopanes in pyrolyzates of hydrocarbon source rocks[J]. Petroleum Geology & Experiment, 2016, 38(5): 672-678. doi: 10.11781/sysydz201605672
    [29] 陈菊林, 张敏. 原油热模拟实验中重排藿烷类变化特征及其意义[J]. 现代地质, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm

    CHEN Julin, ZHANG Min. Rearranged hopanes compositions in pyrolysis experiment of crude oil and geochemical significance[J]. Geoscience, 2016, 30(4): 871-879. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201604016.htm
    [30] 黄振凯, 刘全有, 黎茂稳, 等. 鄂尔多斯盆地长7段泥页岩层系排烃效率及其含油性[J]. 石油与天然气地质, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htm

    HUANG Zhenkai, LIU Quanyou, LI Maowen, et al. Hydrocarbon expulsion efficiency and oil-bearing property of the shale system in Chang 7 Member, Ordos Basin[J]. Oil & Gas Geology, 2018, 39(3): 513-521. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803009.htm
    [31] 黄彦杰, 耿继坤, 白玉彬, 等. 鄂尔多斯盆地富县地区延长组长6、长7段原油地球化学特征及油源对比[J]. 石油实验地质, 2020, 42(2): 281-288. doi: 10.11781/sysydz202002281

    HUANG Yanjie, GENG Jikun, BAI Yubin, et al. Geochemical characteristics and oil-source correlation of crude oils in 6th and 7th members of Yanchang Formation, Fuxian area, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 281-288. doi: 10.11781/sysydz202002281
    [32] 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698

    FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. doi: 10.11781/sysydz202005698
    [33] 董姜畅, 王爱国, 樊志强, 等. 鄂尔多斯盆地中部延长组长7段致密储层成因及控制因素[J]. 断块油气田, 2021, 28(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104004.htm

    DONG Jiangchang, WANG Aiguo, FAN Zhiqiang, et al. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang formation, central Ordos Basin[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 446-451. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104004.htm
    [34] 李志明, 郑伦举, 马中良, 等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447

    LI Zhiming, ZHENG Lunju, MA Zhongliang, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geology & Experiment, 2011, 33(5): 447-451. doi: 10.11781/sysydz201105447
    [35] 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm

    MA Zhongliang, ZHENG Lunju, LI Zhiming. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5): 955-963. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201205021.htm
    [36] LI Honglei, JIANG Lian, CHEN Xiaohui, et al. Identification of the four rearranged hopane series in geological bodies and their geochemical significances[J]. Chinese Journal of Geochemistry, 2015, 34(4): 550-557.
    [37] 肖洪, 王铁冠, 李美俊. 沉积物和原油中重排藿烷的生物来源和成因机制[J/OL]. 地球科学, 2022: 1-25[2022-07-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20220110.0946.004.html.

    XIAO Hong, WANG Tieguan, LI Meijun. Discussion on the biological origin and formation mechanism of rearranged hopanes in sediments and crude oils[J/OL]. Earth Science, 2022: 1-25[2022-07-16]. http://kns.cnki.net/kcms/detail/42.1874.P.20220110.0946.004.html.
    [38] 何大祥, 唐友军, 郑彬, 等. 生排烃热模拟中页岩生物标志化合物的变化及其地质意义[J]. 断块油气田, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm

    HE Daxiang, TANG Youjun, ZHENG Bin, et al. Changes of shale biomarkers in thermal simulation of hydrocarbon generation and expulsion and its geological significance[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 689-694. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202006004.htm
    [39] 张文正, 杨华, 候林慧, 等. 鄂尔多斯盆地延长组不同烃源岩17α(H)-重排藿烷的分布及其地质意义[J]. 中国科学(D辑: 地球科学), 2009, 39(10): 1438-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910011.htm

    ZHANG Wenzheng, YANG Hua, HOU Linhui, et al. Distribution and geological significance of 17α(H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin[J]. Science in China(Series D: Earth Sciences), 2009, 52(7): 965-974. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200910011.htm
    [40] 何川, 郑伦举, 王强, 等. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862

    HE Chuan, ZHENG Lunju, WANG Qiang, et al. Experimental develop-ment and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2021, 43(5): 862-870. doi: 10.11781/sysydz202105862
    [41] 龙祖烈, 石创, 朱俊章, 等. 珠江口盆地白云凹陷原油半开放条件下裂解成气模拟实验[J]. 石油实验地质, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507

    LONG Zulie, SHI Chuang, ZHU Junzhang, et al. Simulation of crude oil cracking and gas generation with semi-open condition, Baiyun Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2021, 43(3): 507-512. doi: 10.11781/sysydz202103507
    [42] JIANG Lian, ZHANG Min, LI Hongbo, et al. Characteristics of rearranged hopanes of hydrocarbon source rocks in saline sedimentary environment: a case study of the Songliao Basin[J]. Acta Geologica Sinica-English Edition, 2016, 90(6): 2269-2270.
    [43] 仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387

    YANG Yunfeng, BAO Fang, BORJIGIN Tenger, et al. Characteristics of organic matter-hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387
    [44] 李二庭, 向宝力, 李际, 等. 甾烷和藿烷的国产X型分子筛分离制备实验研究[J]. 石油实验地质, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713

    LI Erting, XIANG Baoli, LI Ji, et al. Separation of steranes and hopanes by domestic X-type molecular sieves[J]. Petroleum Geology & Experiment, 2021, 43(4): 713-720. doi: 10.11781/sysydz202104713
    [45] LOCKHART R S, MEREDITH W, LOVE G D, et al. Release of bound aliphatic biomarkers via hydropyrolysis from type Ⅱ kerogen at high maturity[J]. Organic Geochemistry, 2008, 39(8): 1119-1124.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  83
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-07-13
  • 刊出日期:  2022-09-28

目录

    /

    返回文章
    返回