留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究

王子强 葛洪魁 郭慧英 周浩 张远凯

王子强, 葛洪魁, 郭慧英, 周浩, 张远凯. 准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究[J]. 石油实验地质, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092
引用本文: 王子强, 葛洪魁, 郭慧英, 周浩, 张远凯. 准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究[J]. 石油实验地质, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092
WANG Ziqiang, GE Hongkui, GUO Huiying, ZHOU Hao, ZHANG Yuankai. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092
Citation: WANG Ziqiang, GE Hongkui, GUO Huiying, ZHOU Hao, ZHANG Yuankai. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(6): 1092-1099. doi: 10.11781/sysydz2022061092

准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究

doi: 10.11781/sysydz2022061092
基金项目: 

新疆维吾尔自治区创新环境(人才、基地)建设专项 人才专项计划—天山青年计划2019Q110

详细信息
    作者简介:

    王子强(1981—),男,硕士,高级工程师,从事油气田开发实验研究及应用。E-mail: zqwang@petrochina.com.cn

  • 中图分类号: TE357.45

Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures

  • 摘要: 准噶尔盆地吉木萨尔页岩油储集层主要发育微纳尺度孔喉裂隙系统,同时油质黏稠,动用难度大,注CO2吞吐是提高采收率的重要技术。为了认清吉木萨尔页岩油储层注CO2吞吐下的可动性规律,对该区芦草沟组45块岩心进行了研究。储层岩性为云屑砂岩、砂屑云岩和岩屑砂岩;储层覆压孔隙度介于2.0%~22.7%之间,平均为11%,覆压渗透率平均为0.01×10-3 μm2,小于0.1×10-3 μm2的样品占比达90%以上。根据岩心物性分类,选取20块岩样开展核磁实验,对页岩油低场核磁共振实验测量的6个关建参数进行了优化;通过将页岩油压汞实验数据和低场核磁共振实验数据对比,在对数坐标下建立了页岩岩心的T2值与孔隙半径之间的线性关系,通过T2谱定量获得了页岩的孔隙半径分布。在此基础上,在不同温压条件下开展9种CO2吞吐实验,结合采收率、动用程度等指标分析得知,半径小于300 nm的小孔隙中页岩油难以动用,300~1 000 nm的中孔隙和大于1 000 nm的大孔隙中页岩油动用程度相对较高,且随着温度和压力的提高而增大。

     

  • 图  1  LMR-1600型低场核磁共振分析仪

    Figure  1.  LMRK-1600 low-field NMR analyzer

    图  2  准噶尔盆地吉木萨尔页岩油岩心样品压汞毛管半径分布与核磁共振T2谱分布

    Figure  2.  Capillary radius distribution of mercury injection and distribution of T2 spectrum of Jimsar shale oil cores in Junggar Basin

    图  3  准噶尔盆地吉木萨尔页岩油三种岩性岩心lgr与lgT2的线性关系

    a.不同岩性累积孔隙体积分布曲线;b.不同岩性横向弛豫时间与毛管半径拟合曲线;c.不同岩性T2谱与压汞测孔隙体积占比曲线

    Figure  3.  Linear relationship between lgr and lgT2 of three lithologic cores of Jimsar shale oil in Junggar Basin

    图  4  准噶尔盆地吉木萨尔页岩油岩心CO2吞吐实验原理

    Figure  4.  Experimental principle of CO2 huff-and-puff in Jimsar shale oil cores of Junggar Basin

    图  5  准噶尔盆地吉木萨尔页岩油岩心CO2吞吐实验装置

    Figure  5.  Experimental device of CO2 huff-and-puff in Jimsar shale oil cores of Junggar Basin

    图  6  准噶尔盆地吉木萨尔页岩油同类岩性CO2吞吐下温度对页岩油可动性的影响

    Figure  6.  Effect of temperature on shale oil mobility under CO2 huff and puff in Jimsar shale oil with the same lithology, Junggar Basin

    图  7  准噶尔盆地吉木萨尔页岩油同类岩性CO2吞吐下压力对页岩油可动性的影响

    Figure  7.  Effect of pressure on shale oil mobility under CO2 huff and puff in Jimsar shale oil with the same lithology, Junggar Basin

    图  8  准噶尔盆地吉木萨尔页岩油CO2吞吐下不同岩性对页岩油可动性的影响

    Figure  8.  Effect of different lithology on shale oil mobility under CO2 huff-and-puff in Jimsar shale oil, Junggar Basin

    表  1  准噶尔盆地吉木萨尔页岩油岩心物性统计分析

    Table  1.   Physical property of Jimsar shale oil cores in Junggar Basin

    序号 岩性 孔隙度/% 渗透率/10-3 μm2 序号 岩性 孔隙度/% 渗透率/10-3 μm2
    1 砂屑云岩 9.7 0.011 24 云屑砂岩 20.8 0.486
    2 砂屑云岩 7.9 0.016 25 云屑砂岩 22.7 0.594
    3 砂屑云岩 14.0 0.282 26 云屑砂岩 10.2 0.007
    4 砂屑云岩 9.0 0.014 27 云屑砂岩 11.0 0.045
    5 砂屑云岩 17.3 0.712 28 云屑砂岩 7.5 0.947
    6 砂屑云岩 9.7 0.016 29 云屑砂岩 2.0 0.012
    7 砂屑云岩 11.8 0.093 30 云屑砂岩 14.3 0.023
    8 砂屑云岩 11.7 0.045 31 云屑砂岩 9.9 0.016
    9 砂屑云岩 15.4 0.041 32 云屑砂岩 9.1 0.020
    10 砂屑云岩 7.2 0.028 33 云屑砂岩 7.1 0.028
    11 砂屑云岩 2.5 0.154 34 云屑砂岩 7.0 0.015
    12 砂屑云岩 9.2 0.020 35 砂屑云岩 10.8 0.402
    13 砂屑云岩 10.2 0.056 36 云屑砂岩 9.3 0.017
    14 砂屑云岩 4.7 0.031 37 岩屑砂岩 12.9 0.149
    15 砂屑云岩 7.7 0.016 38 岩屑砂岩 14.5 0.250
    16 砂屑云岩 8.0 0.013 39 岩屑砂岩 15.0 0.234
    17 砂屑云岩 4.9 0.015 40 岩屑砂岩 11.8 0.057
    18 砂屑云岩 4.9 0.014 41 岩屑砂岩 15.2 0.298
    19 砂屑云岩 6.8 0.018 42 岩屑砂岩 16.1 0.298
    20 砂屑云岩 13.0 0.018 43 岩屑砂岩 16.0 0.565
    21 云屑砂岩 13.9 0.023 44 岩屑砂岩 17.1 0.157
    22 砂屑云岩 16.0 0.065 45 岩屑砂岩 16.0 0.991
    23 砂屑云岩 16.5 0.089
    下载: 导出CSV

    表  2  准噶尔盆地吉木萨尔页岩油岩心核磁共振实验测量参数优化

    Table  2.   Parameter optimization of NMR experiment for Jimsar shale oil cores in Junggar Basin

    参数 数值 优化原则
    Tau值 70 μs 为了防止机器过热,扫描次数大于2 000时,适当增加Tau值,一般大于70 μs
    回波数目 1 500 回波数目×2Tau≈3T1
    扫描次数 3 500 保证信噪比>100
    等待时间 200 ms 3T1~5T1
    相位循环 8 保证信噪比>100
    回波点数 1 增加回波点数可观察弛豫信号细节,一般为1
    下载: 导出CSV

    表  3  不同温压条件下准噶尔盆地吉木萨尔页岩油岩心CO2吞吐实验方案

    Table  3.   Experimental scheme of CO2 huff-and-puff in Jimsar shale oil cores of Junggar Basin under different temperatures and pressures

    实验类别 岩心物性及实验条件
    孔隙度/% 渗透率/10-3μm2 小圆柱尺寸(D×L)/mm 岩性 温度/℃ 压力/MPa
    同岩性同温不同压 7.92 0.028 25.30×68.76 云屑砂岩 50 5
    9.03 0.020 25.46×49.02 云屑砂岩 50 10
    7.16 0.023 25.70×61.58 云屑砂岩 50 15
    5.67 0.018 25.46×46.12 云屑砂岩 50 20
    同岩性同压不同温 7.67 0.030 25.70×41.20 云屑砂岩 30 10
    5.94 0.031 25.56×52.14 云屑砂岩 70 10
    7.50 0.023 25.02×70.10 云屑砂岩 90 10
    同温同压不同岩性 14.50 0.250 25.14×60.30 砂屑云岩 50 10
    11.40 0.038 25.18×67.00 岩屑砂岩 50 10
    下载: 导出CSV
  • [1] 张林晔, 李钜源, 李政, 等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6): 700-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm

    ZHANG Linye, LI Juyuan, LI Zheng, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6): 700-711. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201406008.htm
    [2] 武晓玲, 高波, 叶欣, 等. 中国东部断陷盆地页岩油成藏条件与勘探潜力[J]. 石油与天然气地质, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm

    WU Xiaoling, GAO Bo, YE Xin, et al. Shale oil accumulation conditions and exploration potential of faulted basins in the east of China[J]. Oil & Gas Geology, 2013, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm
    [3] MǍNESCU C B, NUÑO G. Quantitative effects of the shale oil revolution[J]. Energy Policy, 2015, 86: 855-866. doi: 10.1016/j.enpol.2015.05.015
    [4] HOFFMAN B T. Comparison of various gases for enhanced recovery from shale oil reservoirs[C]//Proceedings of the SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA: SPE, 2012.
    [5] GAMADI T D, SHENG J J, SOLIMAN M Y, et al. An experimental study of cyclic CO2 injection to improve shale oil recovery[C]// Proceedings of the SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, USA: SPE, 2014.
    [6] GAMADI T D, SHENG J J, SOLIMAN M Y. An experimental study of cyclic gas injection to improve shale oil recovery[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: SPE, 2013.
    [7] 祝春生, 程林松. 低渗透油藏CO2驱提高原油采收率评价研究[J]. 钻采工艺, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm

    ZHU Chunsheng, CHENG Linsong. Research on CO2 flooding in low permeability reservoir[J]. Drilling & Production Technology, 2007, 30(6): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY200706022.htm
    [8] 刘淑霞. 特低渗透油藏CO2驱室内实验研究[J]. 西南石油大学学报(自然科学版), 2011, 33(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201102022.htm

    LIU Shuxia. Research on laboratory experiments of CO2 drive in ultra-low permeability reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(2): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201102022.htm
    [9] 赵明国, 李金珠, 王忠滨. 特低渗透油藏CO2非混相驱油机理研究[J]. 科学技术与工程, 2011, 11(7): 1438-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201107006.htm

    ZHAO Mingguo, LI Jinzhu, WANG Zhongbin. The study on CO2 immiscible mechanism in low permeability reservoir[J]. Science Technology and Engineering, 2011, 11(7): 1438-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201107006.htm
    [10] HOLM L W, JOSENDAL V A. Mechanisms of oil displacement by carbon dioxide[J]. Journal of Petroleum Technology, 1974, 26(12): 1427-1438.
    [11] HAWTHORNE S B, GORECKI C D, SORENSEN J A, et al. Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2[C]// Proceedings of the SPE Unconventional Resources Conference Canada. Calgary, Alberta, Canada: SPE, 2013.
    [12] SONG Chengyao, YANG Daoyong. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190: 145-162.
    [13] JIN Lu, HAWTHORNE S, SORENSEN J, et al. Advancing CO2 enhanced oil recovery and storage in unconventional oil play: experimental studies on Bakken shales[J]. Applied Energy, 2017, 208: 171-183.
    [14] JIN Lu, HAWTHORNE S, SORENSEN J, et al. Extraction of oil from the Bakken shales with supercritical CO2[C]// Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference. Austin, Texas, USA: URTEC, 2017.
    [15] JIN Lu, SORENSEN J A, HAWTHORNE S B. Improving oil transportability using CO2 in the Bakken system: a laboratory investigation[C]//Proceedings of the SPE International Conference and Exhibition on Formation Damage Control. Lafayette, Louisiana, USA: SPE, 2016.
    [16] LI Lei, ZHANG Yao, SHENG J J. Effect of the injection pressure on enhancing oil recovery in shale cores during the CO2 Huff-n-Puff process when it is above and below the minimum miscibility pressure[J]. Energy & Fuels, 2017, 31(4): 3856-3867.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  101
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-10-18
  • 刊出日期:  2022-11-28

目录

    /

    返回文章
    返回