留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征

康淑娟 仰云峰 王华建 江文滨 何坤 刘冉冉

康淑娟, 仰云峰, 王华建, 江文滨, 何坤, 刘冉冉. 松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征[J]. 石油实验地质, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089
引用本文: 康淑娟, 仰云峰, 王华建, 江文滨, 何坤, 刘冉冉. 松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征[J]. 石油实验地质, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089
KANG Shujuan, YANG Yunfeng, WANG Huajian, JIANG Wenbin, HE Kun, LIU Ranran. Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089
Citation: KANG Shujuan, YANG Yunfeng, WANG Huajian, JIANG Wenbin, HE Kun, LIU Ranran. Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089

松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征

doi: 10.11781/sysydz202301089
基金项目: 

中国科学院战略性先导科技专项 XDA14050204

详细信息
    作者简介:

    康淑娟(1983-), 女, 博士, 高级工程师, 从事深部资源勘探研究。E-mail: ksj@mail.iggcas.ac.cn

  • 中图分类号: TE122.1

Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin

  • 摘要: 松辽盆地中央坳陷区上白垩统青山口组湖相暗色页岩沉积蕴含了数量可观的页岩油资源,其中齐家—古龙凹陷青山口组页岩油勘探已取得重大突破。采用井场密闭热释方法,结合室内溶剂抽提和比较热解方法,综合评价松辽盆地中央坳陷区三肇凹陷青山口组一段页岩含油性特征。结果表明,研究层段青山口组页岩总有机碳含量介于1.48%~6.97%,平均3.40%,Tmax值(抽提后)介于440~453 ℃,平均448 ℃,产率指数(PI)介于0.28~0.67,表明青山口组一段页岩处于大量生油阶段。井场和室内相结合的评价方法获得的页岩油含量介于4.00~19.49 mg/g,平均13.74 mg/g;其中游离油含量介于3.41~13.63 mg/g,平均8.70 mg/g;束缚油含量介于0.60~9.43 mg/g,平均5.04 mg/g。游离油由受限油和可动油组成,受限油含量介于1.81~8.49 mg/g,平均4.15 mg/g;可动油含量介于1.36~11.05 mg/g,平均4.55 mg/g,两者比例约为1∶1。以可动油含量平均值推算,可动油资源量为12 kg/m3,揭示三肇凹陷青山口组一段具有良好的可动页岩油资源潜力。

     

  • 图  1  松辽盆地中央坳陷区构造位置及构造单元划分

    Figure  1.  Tectonic location and units of Central Depression, Songliao Basin

    图  2  本文采用的实验分析流程

    Figure  2.  Workflow of the experiments used in this paper

    图  3  松辽盆地中央坳陷区Z井上白垩统青山口组一段页岩井场密闭热释分析结果

    Figure  3.  Results from sealed release experiments in site of the first member of Upper Cretaceous Qingshankou Formation, well Z, Central Depression, Songliao Basin

    图  4  密闭热释样品DCM抽提前后岩石热解参数对比

    Figure  4.  Comparison of Rock-Eval results before and after DCM extraction for samples after sealed release

    图  5  不同样品的TOC含量对比

    Figure  5.  Relationships of TOC values for different samples

    图  6  热释样品抽提前后S2值与TOC含量之间的关系

    Figure  6.  Relationships between S2 and TOC for sealed-released samples before and after DCM extraction

    图  7  游离油和残留油与TOC含量之间的关系

    Figure  7.  Relationships between free/adsorbed oil contents and TOC

    图  8  松辽盆地中央坳陷区Z井上白垩统青山口组一段页岩可动油、受限油和束缚油含量特征

    Figure  8.  Characteristics of free, restricted, and adsorbed oil contents of the first member of Upper Cretaceous Qingshankou Formation, well Z, Central Depression, Songliao Basin

    表  1  研究样品的实验数据

    Table  1.   Experimental data of samples

    样号 ω(TOC)/% 井场密闭热释 抽提前岩石热解 抽提后岩石热解 热解烃/(mg·g-1) 游离油/(mg·g-1) 残留油/(mg·g-1) 总油/(mg·g-1) 受限油/(mg·g-1) 可动油/(mg·g-1) OSI/(mg·g-1)
    质量/g Sg/(mg·g-1) S0*/(mg·g-1) S1/(mg·g-1) ω(TOC)/% S1-re/(mg·g-1) S2-re/(mg·g-1) Tmax/℃ ω(TOC)/% S1-re/(mg·g-1) S2-re/(mg·g-1) Tmax/℃
    1 2.24 1.10 0.26 1.06 2.99 2.71 0.79 12.37 440 2.48 0.37 8.10 442 4.31 5.11 4.27 9.38 3.31 1.80 266
    2 2.51 1.09 0.32 0.91 3.06 2.52 1.09 12.41 439 2.24 0.30 7.34 446 4.30 5.39 5.08 10.47 3.07 2.32 227
    3 1.60 1.00 0.25 0.95 2.43 1.57 0.54 6.11 438 1.51 0.29 3.93 440 3.63 4.16 2.19 6.35 1.91 2.25 306
    4 0.91 1.06 0.55 1.57 4.22 3.06 0.61 14.57 443 2.91 0.28 9.20 448 6.33 6.95 5.38 12.33 3.74 3.21 155
    5 2.36 1.05 0.49 1.61 3.91 2.20 0.70 12.23 440 1.96 0.36 7.65 444 6.01 6.72 4.58 11.30 2.68 4.04 144
    6 4.63 1.11 0.88 1.38 3.81 4.14 0.34 21.32 447 4.35 0.12 16.40 450 6.07 6.41 4.92 11.34 5.05 1.36 214
    7 6.69 1.15 0.87 2.16 6.49 6.97 0.54 30.12 449 6.62 0.36 20.69 453 9.52 10.06 9.43 19.49 8.49 1.57 217
    8 3.61 1.13 0.60 1.69 5.05 4.02 1.26 19.47 447 4.09 0.63 14.51 452 7.34 8.60 4.96 13.56 4.91 3.69 277
    9 4.83 1.05 0.72 1.89 5.75 4.42 1.23 21.69 445 4.49 0.45 16.57 452 8.36 9.59 5.12 14.71 5.39 4.20 309
    10 4.02 1.04 0.64 1.81 5.07 3.01 0.83 16.22 446 3.21 0.56 12.57 450 7.52 8.34 3.65 11.99 3.67 4.67 644
    11 3.18 1.12 0.78 1.83 6.61 3.61 1.94 17.96 444 3.51 0.49 11.52 448 9.22 11.15 6.44 17.59 4.41 6.75 248
    12 2.23 1.09 0.69 1.95 8.88 2.12 2.11 12.52 437 1.81 0.70 6.69 443 11.52 13.63 5.83 19.46 2.58 11.05 187
    13 1.65 1.16 0.70 1.79 5.16 3.55 1.16 18.42 449 3.77 0.64 13.67 452 7.65 8.81 4.75 13.56 4.33 4.48 273
    14 6.29 1.05 0.70 2.37 7.24 6.05 0.99 23.33 448 5.72 0.54 17.46 450 10.31 11.30 5.87 17.17 7.37 3.92 231
    15 3.60 1.09 0.86 1.78 5.74 3.68 1.66 15.45 439 3.10 1.16 10.34 445 8.38 10.04 5.11 15.15 4.49 5.55 226
    16 5.22 1.05 0.60 2.05 6.79 4.66 1.34 19.17 448 4.28 0.81 14.10 451 9.45 10.79 5.07 15.86 5.69 5.10 297
    17 4.07 1.13 0.30 1.43 5.54 3.96 1.66 20.30 445 3.93 0.47 14.56 449 7.27 8.93 5.74 14.67 4.83 4.10 267
    18 3.42 1.16 0.42 1.65 5.38 3.11 1.79 17.49 445 2.94 0.82 11.65 448 7.45 9.24 5.84 15.08 3.79 5.45 323
    19 3.03 1.06 0.14 0.99 5.18 2.83 1.26 16.52 440 2.65 0.27 11.01 445 6.31 7.58 5.51 13.09 3.46 4.12 447
    20 3.22 1.05 0.36 1.64 6.05 3.00 1.66 16.48 440 3.01 0.71 10.69 450 8.05 9.70 5.79 15.49 3.66 6.04 275
    21 2.54 1.04 0.40 1.17 5.70 2.16 2.40 12.49 439 1.82 1.15 8.36 448 7.27 9.66 4.14 13.80 2.64 7.02 225
    22 3.31 1.04 0.42 2.09 6.72 3.88 1.46 19.12 442 3.90 0.65 12.73 450 9.22 10.68 6.39 17.07 4.73 5.95 236
    23 4.64 1.05 0.62 2.27 6.62 4.71 1.09 21.93 450 4.63 0.53 15.07 450 9.51 10.60 6.86 17.45 5.75 4.85 351
    24 4.50 1.12 0.55 1.84 6.13 4.23 1.48 21.97 450 4.06 0.70 14.67 449 8.51 9.99 7.30 17.29 5.16 4.83 424
    25 3.39 1.02 0.91 2.54 7.39 3.46 1.32 17.48 442 3.39 0.66 12.62 450 10.83 12.15 4.86 17.01 4.22 7.93 291
    26 1.84 1.03 0.39 1.09 5.27 1.93 1.44 10.12 441 1.89 0.52 6.13 446 6.75 8.19 3.98 12.18 2.36 5.84 230
    27 1.72 1.04 0.17 0.86 4.50 2.19 0.86 7.13 445 2.21 0.65 5.73 448 5.53 6.39 1.40 7.79 2.67 3.72 188
    28 1.44 1.03 0.14 0.47 2.43 1.48 0.36 3.67 445 1.56 0.14 3.07 449 3.04 3.41 0.60 4.00 1.81 1.60 214
    下载: 导出CSV
  • [1] 王红军, 马锋, 童晓光, 等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606003.htm

    WANG Hongjun, MA Feng, TONG Xiaoguang, et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43(6): 850-862. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606003.htm
    [2] 宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4): 638-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704020.htm

    SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704020.htm
    [3] 罗安湘, 喻建, 刘显阳, 等. 鄂尔多斯盆地中生界石油勘探实践及主要认识[J]. 新疆石油地质, 2022, 43(3): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202203001.htm

    LUO Anxiang, YU Jian, LIU Xianyang, et al. Practices and cognitions of petroleum exploration in Mesozoic, Ordos Basin[J]. Xinjiang Petroleum Geology, 2022, 43(3): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202203001.htm
    [4] 刘金, 王剑, 张宝真, 等. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组微—纳米孔隙页岩油原位赋存特征[J]. 石油实验地质, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270

    LIU Jin, WANG Jian, ZHANG Baozhen, et al. In situ occurrence of shale oil in micro-nano pores in Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(2): 270-278. doi: 10.11781/sysydz202202270
    [5] 赵俊峰, 刘池洋, 张东东, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长7段剖面及其油气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 233-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201020.htm

    ZHAO Junfeng, LIU Chiyang, ZHANG Dongdong, et al. Description and its hydrocarbon geological implications of outcrop sections of Triassic Chang-7 Member in southern Ordos Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 233-245. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201020.htm
    [6] 夏赟, 张丽萍, 褚浩元, 等. 吉木萨尔页岩油"下甜点"低成本技术[J]. 油气藏评价与开发, 2021, 11(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104009.htm

    XIA Yun, ZHANG Liping, CHU Haoyuan, et al. Low-cost technology of Jimsar shale oil: a case study of lower "sweet spot"[J]. Reservoir Evaluation and Development, 2021, 11(4): 536-541. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202104009.htm
    [7] 王剑, 周路, 靳军, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油储层孔隙结构、烃类赋存及其与可动性关系[J]. 石油实验地质, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941

    WANG Jian, ZHOU Lu, JIN Jun, et al. Pore structure, hydrocarbon occurrence and their relationship with shale oil production in Lucaogou Formation of Jimsar Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 941-948. doi: 10.11781/sysydz202106941
    [8] 李志明, 孙中良, 黎茂稳, 等. 陆相基质型页岩油甜点区成熟度界限探讨: 以渤海湾盆地东营凹陷沙三下—沙四上亚段为例[J]. 石油实验地质, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767

    LI Zhiming, SUN Zhongliang, LI Maowen, et al. Maturity limit of sweet spot area for continental matrix type shale oil: a case study of lower Es3 and upper Es4 sub-members in Dongying Sag, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 767-775. doi: 10.11781/sysydz202105767
    [9] 杨智峰, 唐勇, 郭旭光, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存特征与影响因素[J]. 石油实验地质, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784

    YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in the Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 784-796. doi: 10.11781/sysydz202105784
    [10] 张才利, 刘新社, 杨亚娟, 等. 鄂尔多斯盆地长庆油田油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103002.htm

    ZHANG Caili, LIU Xinshe, YANG Yajuan, et al. Petroleum exploration history and enlightenment of Changqing Oilfield in Ordos Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 253-263. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103002.htm
    [11] 卢振东, 刘成林, 曾晓祥, 等. 页岩油资源规模分布模型及敏感性研究[J]. 石油实验地质, 2022, 44(4): 730-738. doi: 10.11781/sysydz202204730

    LU Zhendong, LIU Chenglin, ZENG Xiaoxiang, et al. Shale oil size distribution models and their sensitivities[J]. Petroleum Geology & Experiment, 2022, 44(4): 730-738. doi: 10.11781/sysydz202204730
    [12] 张冰. 松辽盆地北部页岩储层地质评价及关键技术研究[J]. 特种油气藏, 2022, 29(5): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205010.htm

    ZHANG Bing. Geological evaluation and key technology of shale reservoirs in northern Songliao Basin[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202205010.htm
    [13] 崔宝文, 赵莹, 张革, 等. 松辽盆地古龙页岩油地质储量估算方法及其应用[J]. 大庆石油地质与开发, 2022, 41(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202203002.htm

    CUI Baowen, ZHAO Ying, ZHANG Ge, et al. Estimation method and application for OOIP of Gulong shale oil in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202203002.htm
    [14] HU Tao, PANG Xiongqi, JIANG Fujie, et al. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021, 214: 103545. http://www.sciencedirect.com/science/article/pii/S0012825221000441
    [15] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [16] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao et al. A numerical method for calculating total oil yield using a single routine Rock-Eval program: a case study of the Eocene Shahejie Formation in Dongying Depression, Bohai Bay Basin, China[J]. International Journal of Coal Geology, 2018, 191: 49-65. http://www.sciencedirect.com/science/article/pii/S0166516218300594
    [17] ROMERO-SARMIENTO M F. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks[J]. AAPG Bulletin, 2019, 103(9): 2031-2043. http://www.researchgate.net/publication/333089221_A_quick_analytical_approach_to_estimate_both_free_versus_sorbed_hydrocarbon_contents_in_liquid_rich_source_rocks
    [18] LI Jinbu, WANG Min, CHEN Zhuoheng, et al. Evaluating the total oil yield using a single routine Rock-Eval experiment on as-received shales[J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104707. http://www.sciencedirect.com/science/article/pii/S0165237019305637
    [19] JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century, AAPG memoir 97, 2012: 89-119.
    [20] DELVEAUX D, MARTIN H, LEPLAT P, et al. Comparative Rock-Eval pyrolysis as an improved tool for sedimentary organic matter analysis[J]. Organic Geochemistry, 1990, 16(4/6): 1221-1229. http://www.researchgate.net/profile/Damien_Delvaux/publication/240412036_Comparative_Rock-Eval_pyrolysis_as_an_improved_tool_for_sedimentary_organic_matter_analysis/links/00b4953ac5fdbde99c000000.pdf
    [21] MICHAEL G E, PACKWOOD J, HOLBA A. Determination of in-situ hydrocarbon volumes in liquid rich shale plays[C]//Unconventional Resources Technology Conference. Denver, Colorado, USA: SEG, 2013: 2037-2043.
    [22] LI Maowen, MA Xiaoxiao, LI Zhiming, et al. Emerging shale oil plays in hypersaline lacustrine Qianjiang Formation, Jianghan Basin, Central China[C]//Unconventional Resources Technology Conference. Houston, Texas, USA: SEG, 2018: 108-125.
    [23] JARVIE D, BAKER D. Application of the Rock-Eval Ⅲ oil show analyzer to the study of gaseous hydrocarbons in an Oklahoma gas well[C]//187th American Chemical Society National Meeting. St. Louis, Missouri: ACS, 1984.
    [24] 王岚, 周海燕, 商斐, 等. 松辽盆地北部白垩纪青山口组黑色页岩元素地球化学特征及沉积古环境恢复[J]. 地质科学, 2022, 57(1): 156-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201010.htm

    WANG Lan, ZHOU Haiyan, SHANG Fei, et al. Element geochemical characteristics of black shale and paleo-sedimentary environmental restoration of Qingshankou Formation of the Cretaceous in the northern Songliao Basin[J]. Chinese Journal of Geology, 2022, 57(1): 156-171. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202201010.htm
    [25] 罗超, 张焕旭, 张纪智, 等. 岩石密闭热释方法评价页岩含油性特征: 以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712

    LUO Chao, ZHANG Huanxu, ZHANG Jizhi, et al. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 712-719. (in press) doi: 10.11781/sysydz202204712
    [26] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325. http://www.barnettshalenews.com/documents/2012/pres/Components%20&%20Processes%20Affecting%20Producibility%20&%20Commerciality%20of%20Shale%20Resource%20Systems%20by%20Dan%20Jarvie%2C%20Shale%20Oil%20Symposium%2C%20China%2C%20April16-17%202012.pdf
    [27] HAN Yuanjia, MAHLSTEDT N, HORSFIELD B. The Barnett shale: compositional fractionation associated with intraformational petroleum migration, retention, and expulsion[J]. AAPG Bulletin, 2015, 99(12): 2173-2202. http://d.wanfangdata.com.cn/periodical/b9519c3f49cebebedb5f37beca9502b3
    [28] ZINK K G, SCHEEDER G, STUECK H L, et al. Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany[J]. International Journal of Coal Geology, 2016, 163: 186-194. http://www.onacademic.com/detail/journal_1000039471561210_67b0.html
    [29] 谌卓恒, 黎茂稳, 姜春庆, 等. 页岩油的资源潜力及流动性评价方法: 以西加拿大盆地上泥盆统Duvernay页岩为例[J]. 石油与天然气地质, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm

    CHEN Zhuoheng, LI Maowen, JIANG Chunqing, et al. Shale oil resource potential and its mobility assessment: a case study of Upper Devonian Duvernay shale in Western Canada Sedimentary Basin[J]. Oil & Gas Geology, 2019, 40(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903003.htm
    [30] LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143. http://www.sciencedirect.com/science/article/pii/S0166516218304051
    [31] SANDVIK E I, YOUNG W A, CURRY D J. Expulsion from hydrocarbon sources: the role of organic absorption[J]. Organic Geochemistry, 1992, 19(1/3): 77-87. http://www.sciencedirect.com/science/article/pii/014663809290028V
    [32] JARVIE D M, COSKEY R J, JOHNSON M S, et al. The geology and geochemistry of the Parshall area, Mountrail County, North Dakota[M]//The Bakken-Three Forks petroleum system in the Williston Basin. Rocky Mountain Association of Geologists, 2011: 229-281.
    [33] 曾维主, 宋之光, 曹新星. 松辽盆地北部青山口组烃源岩含油性分析[J]. 地球化学, 2018, 47(4): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201804003.htm

    ZENG Weizhu, SONG Zhiguang, CAO Xinxing. Oil potential of Qingshankou Formation source rocks in northern Songliao Basin[J]. Geochimica, 2018, 47(4): 345-353. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201804003.htm
    [34] 李昂, 张丽艳, 杨建国, 等. 松辽盆地三肇凹陷青山口组页岩油地震甜点预测方法及应用[J]. 地质与资源, 2021, 30(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103019.htm

    LI Ang, ZHANG Liyan, YANG Jianguo, et al. Seismic method for shale oil sweet spot prediction in Qingshankou Formation of Sanzhao Sag, Songliao Basin[J]. Geology and Resources, 2021, 30(3): 366-376. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103019.htm
    [35] ESPITALIE J. Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance[M]//BURRUS J. Thermal modelling in sedimentary basins. Paris: Editions Technip, 1986: 475-496.
    [36] KING R R, JARVIE D, CANNON D, et al. Addressing the caveats of source rock pyrolysis in the unconventional world: modified methods and interpretative ideas[C]//Unconventional Resources Technology Conference. San Antonio, Texas: SEG, 2015: 919-934.
    [37] ZHANG Penglin, MISCH D, MENG Qingtao, et al. Comprehensive thermal maturity assessment in shales: a case study on the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China)[J]. International Journal of Earth Sciences, 2021, 110(3): 943-962. doi: 10.1007/s00531-021-02000-4
    [38] KATZ B J, LIN Fang. Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies[J]. AAPG Bulletin, 2021, 105(4): 695-720. http://www.researchgate.net/publication/350560378_Consideration_of_the_limitations_of_thermal_maturity_with_respect_to_vitrinite_reflectance_Tmax_and_other_proxies
    [39] KRUGE M A. Diagenesis of Miocene biogenic sediments in Lost Hills Oil Field, San Joaquin Basin, California[M]//ISAACS C M, GARRISON R E. Petroleum generation and occurrence in the Miocene Monterey Formation, California. Los Angeles: SEPM, 1983: 39-51.
    [40] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499. http://www.eesi.psu.edu/seminars-conferences/earthtalks-spring2009-marcellus-supplements/BarnettShGasJarvie.pdf
    [41] 郭秋麟, 王建, 陈晓明, 等. 页岩油原地量和可动油量评价方法与应用[J]. 石油与天然气地质, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htm

    GUO Qiulin, WANG Jian, CHEN Xiaoming, et al. Discussion on evaluation method of total oil and movable oil in-place[J]. Oil & Gas Geology, 2021, 42(6): 1451-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106019.htm
    [42] 姚红生, 昝灵, 高玉巧, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油富集高产主控因素与勘探重大突破[J]. 石油实验地质, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776

    YAO Hongsheng, ZAN Ling, GAO Yuqiao, et al. Main controlling factors for the enrichment of shale oil and significant discovery in second member of Paleogene Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 776-783. doi: 10.11781/sysydz202105776
    [43] HU Tao, PANG Xiongqi, JIANG Shu, et al. Oil content evaluation of lacustrine organic-rich shale with strong heterogeneity: a case study of the Middle Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin, NW China[J]. Fuel, 2018, 221: 196-205. http://www.sciencedirect.com/science/article/pii/S0016236118302412
    [44] 黄振凯, 郝运轻, 李双建, 等. 鄂尔多斯盆地长7段泥页岩层系含油气性与页岩油可动性评价: 以H317井为例[J]. 中国地质, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm

    HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin: a case study of well H317[J]. Geology in China, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  132
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-13
  • 修回日期:  2022-11-14
  • 刊出日期:  2023-01-28

目录

    /

    返回文章
    返回