留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例

马云峰 赵建国 孙龙 暴玉宁 曹青赟 巩肖可 陈朝兵 王恒力

马云峰, 赵建国, 孙龙, 暴玉宁, 曹青赟, 巩肖可, 陈朝兵, 王恒力. 应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例[J]. 石油实验地质, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466
引用本文: 马云峰, 赵建国, 孙龙, 暴玉宁, 曹青赟, 巩肖可, 陈朝兵, 王恒力. 应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例[J]. 石油实验地质, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466
MA Yunfeng, ZHAO Jianguo, SUN Long, BAO Yuning, CAO Qingyun, GONG Xiaoke, CHEN Zhaobing, WANG Hengli. Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress: a case study of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466
Citation: MA Yunfeng, ZHAO Jianguo, SUN Long, BAO Yuning, CAO Qingyun, GONG Xiaoke, CHEN Zhaobing, WANG Hengli. Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress: a case study of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 466-473. doi: 10.11781/sysydz202303466

应力作用下气藏水体微观赋存特征及渗流规律——以鄂尔多斯盆地神木气田二叠系盒8段致密储层为例

doi: 10.11781/sysydz202303466
基金项目: 

国家自然科学基金 41802140

国家科技重大专项 2016ZX05050006

陕西省自然科学研究基础计划项目 2019JQ-257

详细信息
    作者简介:

    马云峰(1971—),男,硕士,工程师,从事致密气藏提高采收率系统研究。E-mail: 1754613726@qq.com

    通讯作者:

    王恒力(1991—),男,博士,讲师,从事致密气藏渗流机理研究。E-mail: wanghengli@yau.edu.cn

  • 中图分类号: TE122.2

Microscopic occurrence characteristics and seepage law of water bodies in gas reservoir under stress: a case study of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

  • 摘要: 针对致密气藏衰竭开发过程中储层孔隙结构及流体微观赋存特征随其所受应力大小实时变化的问题,以鄂尔多斯盆地神木气田二叠系石盒子组盒8段致密储层为例,通过核磁共振、高压压汞以及驱替实验,定量表征不同应力条件下孔隙结构、水体动用及束缚水分布特征,分析应力对气水相渗规律的影响。研究表明,有效应力由7 MPa增加至17 MPa后,储层孔隙度由8.39%减小至7.65%,最大孔隙半径由38.3 μm减小至35.2 μm,其中半径为0.3~18.9 μm范围内的孔喉数量减少幅度最大;由于孔喉尺寸减小,参与渗流的孔隙数量减少,束缚水饱和度由51.3%增加至59.7%,束缚水水体尺寸的分布范围由0.012~17.4 μm增大至0.012~20.1 μm;孔隙变化及束缚水分布特征的变化进一步导致气水两相相对渗透率均减小,气相相对渗透率由0.481减小至0.283,等渗点的相对渗透率由0.157减小至0.09。

     

  • 图  1  鄂尔多斯盆地神木气田二叠系盒8段致密储层矿物成分

    Figure  1.  Mineral composition of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  2  鄂尔多斯盆地神木气田二叠系盒8段致密储层岩石颗粒接触方式

    Figure  2.  Contact mode of rock particles in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  3  鄂尔多斯盆地神木气田二叠系盒8段致密储层孔隙类型

    Figure  3.  Pore types of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  4  鄂尔多斯盆地神木气田二叠系盒8段实验岩心切割位置

    Figure  4.  Cutting diagram of experimental cores from the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  5  核磁共振驱替实验设备

    ①驱替系统,②核磁监测系统,③辅助系统

    Figure  5.  Equipment drawing of NMR displacement experiment

    图  6  鄂尔多斯盆地神木气田二叠系盒8段致密储层高压压汞实验结果

    Figure  6.  Results of high pressure mercury injection experiment of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  7  鄂尔多斯盆地神木气田二叠系盒8段致密储层核磁共振结果

    Figure  7.  Results of NMR in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  8  高压压汞和核磁共振技术联合表征神木气田盒8段致密储层孔喉分布

    Figure  8.  Characterization of pore throat distribution of tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin by high pressure mercury injection and NMR technology

    图  9  鄂尔多斯盆地神木气田二叠系盒8段致密储层孔喉半径及束缚水分布特征

    Figure  9.  Distribution characteristics of pore-throat radius and bound water in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  10  鄂尔多斯盆地神木气田二叠系盒8段致密储层不同应力条件下的气水相渗曲线

    Figure  10.  Gas-water permeability curves under different stress conditions in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  11  鄂尔多斯盆地神木气田二叠系盒8段致密储层不同应力条件下的孔隙半径分布曲线

    Figure  11.  Curves of pore radius distribution under different stress conditions in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

    图  12  鄂尔多斯盆地神木气田二叠系盒8段致密储层不同应力条件下束缚水分布特征

    Figure  12.  Characteristics of bound water distribution under different stress conditions in tight reservoirs in the eighth member of Permian Shihezi Formation, Shenmu Gas Field, Ordos Basin

  • [1] 杨泽, 梅宸, 薛锦善, 等. 致密气储层压裂液渗吸核磁共振微观分析[J]. 能源与环保, 2022, 44(5): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202205011.htm

    YANG Ze, MEI Chen, XUE Jinshan, et al. Microscopic analysis of fracturing fluid percolation NMR in tight gas reservoirs[J]. China Energy and Environmental Protection, 2022, 44(5): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202205011.htm
    [2] 徐延勇, 申建, 张兵, 等. 鄂尔多斯盆地中东部上古生界致密气成藏条件差异性分析[J]. 断块油气田, 2022, 29(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205001.htm

    XU Yanyong, SHEN Jian, ZHANG Bing, et al. Analysis on diffe-rences of tight gas accumulation conditions of Upper Paleozoic in central and eastern Ordos Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205001.htm
    [3] 贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92. doi: 10.3787/j.issn.1000-0976.2022.01.008

    JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92. doi: 10.3787/j.issn.1000-0976.2022.01.008
    [4] 赵文智, 贾爱林, 王坤, 等. 中国天然气"十三五"勘探开发理论技术进展与前景展望[J]. 石油科技论坛, 2021, 40(3): 11-23. doi: 10.3969/j.issn.1002-302x.2021.03.002

    ZHAO Wenzhi, JIA Ailin, WANG Kun, et al. Theoretical and technological progress and development prospect of China's natural gas exploration and development in the 13th five-year plan period[J]. Petroleum Science and Technology Forum, 2021, 40(3): 11-23. doi: 10.3969/j.issn.1002-302x.2021.03.002
    [5] 邹才能, 郭建林, 贾爱林, 等. 中国大气田科学开发的内涵[J]. 天然气工业, 2020, 40(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003002.htm

    ZOU Caineng, GUO Jianlin, JIA Ailin, et al. Connotation of scientific development for giant gas fields in China[J]. Natural Gas Industry, 2020, 40(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003002.htm
    [6] 胡勇, 邵阳, 陆永亮, 等. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J]. 天然气地球科学, 2011, 22(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101030.htm

    HU Yong, SHAO Yang, LU Yongliang, et al. Experimental study on occurrence models of water in pores and the influencing to the development of tight gas reservoir[J]. Natural Gas Geoscience, 2011, 22(1): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201101030.htm
    [7] 王璐, 杨胜来, 彭先, 等. 缝洞型碳酸盐岩气藏多类型储层内水的赋存特征可视化实验[J]. 石油学报, 2018, 39(6): 686-696. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806007.htm

    WANG Lu, YANG Shenglai, PENG Xian, et al. Visual experiments on the occurrence characteristics of multi-type reservoir water in fracture-cavity carbonate gas reservoir[J]. Acta Petrolei Sinica, 2018, 39(6): 686-696. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201806007.htm
    [8] 张杰, 李熙喆, 高树生, 等. 致密砂岩气藏产水机理及其对渗流能力的影响[J]. 天然气地球科学, 2019, 30(10): 1519-1530. doi: 10.11764/j.issn.1672-1926.2019.10.015

    ZHANG Jie, LI Xizhe, GAO Shusheng, et al. Water production mechanism of tight sandstone gas reservoir and its influence on percolation capacity[J]. Natural Gas Geoscience, 2019, 30(10): 1519-1530. doi: 10.11764/j.issn.1672-1926.2019.10.015
    [9] NING Bo, XIANG Zuping, LIU Xianshan, et al. Production prediction method of horizontal wells in tight gas reservoirs considering threshold pressure gradient and stress sensitivity[J]. Journal of Petroleum Science and Engineering, 2020, 187: 106750. doi: 10.1016/j.petrol.2019.106750
    [10] 贾品, 李壮, 尹恒飞, 等. 高地饱压差油藏应力敏感特征及定量表征研究[J]. 特种油气藏, 2021, 28(2): 150-155. doi: 10.3969/j.issn.1006-6535.2021.02.023

    JIA Pin, LI Zhuang, YIN Hengfei, et al. Study on the stress sensitivity characteristics and quantitative characterization of oil reservoir with high formation saturation pressure difference[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 150-155. doi: 10.3969/j.issn.1006-6535.2021.02.023
    [11] 俞凌杰, 刘可禹, 范明, 等. 页岩孔隙中气—水赋存特征研究: 以川东南地区下志留统龙马溪组为例[J]. 石油实验地质, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089

    YU Lingjie, LIU Keyu, FAN Ming, et al. Co-occurring characteristics of pore gas and water in shales: a case study of the Lower Silurian Longmaxi Formation in the southeastern Sichuan Basin[J]. Petro-leum Geology & Experiment, 2021, 43(6): 1089-1096. doi: 10.11781/sysydz2021061089
    [12] 王雯娟, 鲁瑞彬, 雷霄, 等. 高温高压低渗气藏可动水饱和度及水气比定量评价方法[J]. 中国海上油气, 2022, 34(3): 91-97. doi: 10.11935/j.issn.1673-1506.2022.03.011

    WANG Wenjuan, LU Ruibin, LEI Xiao, et al. Quantitative evaluation method of movable water saturation (MWS) and water gas ratio (WGR) in high temperature high pressure (HTHP) and low permeability gas reservoirs[J]. China Offshore Oil and Gas, 2022, 34(3): 91-97. doi: 10.11935/j.issn.1673-1506.2022.03.011
    [13] ZHANG Jie, LI Xizhe, SHEN Weijun, et al. Study of the effect of movable water saturation on gas production in tight sandstone gas reservoirs[J]. Energies, 2020, 13(18): 4645. doi: 10.3390/en13184645
    [14] 孙军昌, 杨正明, 唐立根, 等. 致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报(理工版), 2011, 28(5): 377-383. doi: 10.3969/j.issn.1000-2618.2011.05.001

    SUN Junchang, YANG Zhengming, TANG Ligen, et al. Study on distribution law of irreducible water and gas saturation of tight sandstone gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(5): 377-383. doi: 10.3969/j.issn.1000-2618.2011.05.001
    [15] 柳娜, 周兆华, 任大忠, 等. 致密砂岩气藏可动流体分布特征及其控制因素: 以苏里格气田西区盒8段与山1段为例[J]. 岩性油气藏, 2019, 31(6): 14-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906002.htm

    LIU Na, ZHOU Zhaohua, REN Dazhong, et al. Distribution characte-ristics and controlling factors of movable fluid in tight sandstone gas reservoir: a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field[J]. Lithologic Reservoirs, 2019, 31(6): 14-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906002.htm
    [16] 郭明强, 周龙刚, 张兵, 等. 致密砂岩气水分布特征: 以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855-864. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006012.htm

    GUO Mingqiang, ZHOU Longgang, ZHANG Bing, et al. The regularity of gas and water distribution for tight sandstone: case study of Linxing area, eastern Ordos Basin[J]. Natural Gas Geoscience, 2020, 31(6): 855-864. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202006012.htm
    [17] 张岩, 王勇飞, 高伟, 等. 川西坳陷致密气藏束缚水赋存状态与产出机理[J]. 石油地质与工程, 2020, 34(5): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202005013.htm

    ZHANG Yan, WANG Yongfei, GAO Wei, et al. Occurrence state and production mechanism of bound water in tight gas reservoirs in Western Sichuan Depression[J]. Petroleum Geology and Engineering, 2020, 34(5): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN202005013.htm
    [18] 卢婷, 王鸣川, 马文礼, 等. 考虑多重应力敏感效应的页岩气藏压裂水平井试井模型[J]. 新疆石油地质, 2021, 42(6): 741-748. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106015.htm

    LU Ting, WANG Mingchuan, MA Wenli, et al. Fractured horizontal well test model for shale gas reservoirs with considering multiple stress sensitive factors[J]. Xinjiang Petroleum Geo-logy, 2021, 42(6): 741-748. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202106015.htm
    [19] 张希胜, 杨胜来, 张政, 等. 应力敏感对高石梯—磨溪区块灯四段气藏开发的影响[J]. 断块油气田, 2022, 29(5): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205016.htm

    ZHANG Xisheng, YANG Shenglai, ZHANG Zheng, et al. Influence of stress sensitivity on gas reservoir development of the 4th Member of Dengying Formation in Gaoshit-Moxi Block[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205016.htm
    [20] 杨国红, 李秀清, 李明秋, 等. 可动水对储层应力敏感性影响的实验研究[J]. 特种油气藏, 2021, 28(2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102013.htm

    YANG Guohong, LI Xiuqing, LI Mingqiu, et al. Experimental study on the influence of movable water on reservoir stress sensitivity[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202102013.htm
    [21] HUANG Xiaoliang, GUO Xiao, ZHOU Xiang, et al. Productivity model for water-producing gas well in a dipping gas reservoir with an aquifer considering stress-sensitive effect[J]. Journal of Energy Resources Technology, 2019, 141(2): 022903. http://www.onacademic.com/detail/journal_1000041629480299_0f2a.html
    [22] YANG Zhaopeng, WU Zhiwei, LI Yinghua, et al. Effect of connate water on stress sensitivity of tight gas reservoirs[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(10): 1227-1241. doi: 10.1080/15567036.2019.1636158
    [23] 赫文昊, 魏虎, 和向楠, 等. 考虑应力敏感的致密气藏动态产能方程及应用[J]. 非常规油气, 2021, 8(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202104012.htm

    HE Wenhao, WEI Hu, HE Xiangnan, et al. Establishment and application of tight gas dynamic productivity equation considering stress sensitivity[J]. Unconventional Oil & Gas, 2021, 8(4): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202104012.htm
    [24] 周德胜, 师煜涵, 李鸣, 等. 基于核磁共振实验研究致密砂岩渗吸特征[J]. 西安石油大学学报(自然科学版), 2018, 33(2): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201802008.htm

    ZHOU Desheng, SHI Yuhan, LI Ming, et al. Study on spontaneous imbibition feature of tight sandstone based on NMR experiment[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2018, 33(2): 51-57. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY201802008.htm
    [25] 张建升, 许赛男, 齐奕, 等. 基于恒速压汞和核磁共振测井的低孔低渗储层变胶结指数确定方法[J]. 西安石油大学学报(自然科学版), 2022, 37(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202203006.htm

    ZHANG Jiansheng, XU Sainan, QI Yi, et al. Determination of variable cementation index of low-porosity and low-permeability reservoir based on constant velocity mercury injection and nuclear magnetic resonance logging[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2022, 37(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202203006.htm
    [26] 房涛, 张立宽, 刘乃贵, 等. 核磁共振技术定量表征致密砂岩气储层孔隙结构: 以临清坳陷东部石炭系—二叠系致密砂岩储层为例[J]. 石油学报, 2017, 38(8): 902-915. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708005.htm

    FANG Tao, ZHANG Likuan, LIU Naigui, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology: a case study of Carboniferous-Permian tight sandstone reservoir in Linqing Depression[J]. Acta Petrolei Sinica, 2017, 38(8): 902-915. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201708005.htm
    [27] 肖佃师, 卢双舫, 陆正元, 等. 联合核磁共振和恒速压汞方法测定致密砂岩孔喉结构[J]. 石油勘探与开发, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm

    XIAO Dianshi, LU Shuangfang, LU Zhengyuan, et al. Combining nuclear magnetic resonance and rate-controlled porosimetry to probe the pore-throat structure of tight sandstones[J]. Petroleum Exploration and Development, 2016, 43(6): 961-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606014.htm
    [28] 冯动军, 肖开华. 恒速压汞及核磁共振技术在四川盆地西部致密砂岩储层评价中的应用[J]. 石油实验地质, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368

    FENG Dongjun, XIAO Kaihua. Constant velocity mercury injection and nuclear magnetic resonance in evaluation of tight sandstone reservoirs in western Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 368-376. doi: 10.11781/sysydz202102368
    [29] TIAN Leng, WANG Hengli, WU Tao, et al. In-depth analysis of ultrasonic-induced geological pore re-structures[J]. Ultrasonics Sonochemistry, 2022, 85: 105990.
  • 加载中
图(12)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  135
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2023-04-10
  • 刊出日期:  2023-05-28

目录

    /

    返回文章
    返回