留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层页岩孔隙结构及游离气传输特征——以四川盆地龙马溪组页岩为例

万成祥 郭旭升 申宝剑 常佳琦 薛子鑫 杜伟

万成祥, 郭旭升, 申宝剑, 常佳琦, 薛子鑫, 杜伟. 深层页岩孔隙结构及游离气传输特征——以四川盆地龙马溪组页岩为例[J]. 石油实验地质, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204
引用本文: 万成祥, 郭旭升, 申宝剑, 常佳琦, 薛子鑫, 杜伟. 深层页岩孔隙结构及游离气传输特征——以四川盆地龙马溪组页岩为例[J]. 石油实验地质, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204
WAN Chengxiang, GUO Xusheng, SHEN Baojian, CHANG Jiaqi, XUE Zixin, DU Wei. Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204
Citation: WAN Chengxiang, GUO Xusheng, SHEN Baojian, CHANG Jiaqi, XUE Zixin, DU Wei. Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204

深层页岩孔隙结构及游离气传输特征——以四川盆地龙马溪组页岩为例

doi: 10.11781/sysydz2023061204
基金项目: 

中国石化科技部项目“四川盆地志留系致密储层潜力评价” P21042-3

详细信息
    作者简介:

    万成祥(1994—),男,博士,助理研究员,从事页岩气赋存规律及成藏机理研究。E-mail: wancx.syky@sinopec.com

  • 中图分类号: TE122.12

Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example

  • 摘要: 深层页岩气是四川盆地龙马溪组页岩气增储上产的重要攻关方向,但与中浅层页岩气在储层特征和渗流特征方面存在差异,一定程度上限制了深层页岩气的勘探开发进展。为了明确深层页岩气的储层孔隙结构特征及页岩游离气传输特征,以川南深层龙马溪组优质页岩为例,开展了页岩储层孔隙结构观察和定量表征实验,并基于体相气体传输机理,探讨了页岩游离气的传输特征、临界条件及动态演化规律。①深层页岩储层孔隙形态特征与中浅层差别不大,但中孔的孔隙结构特征更加明显,孔体积占比为62.5%~69.7%;②深层页岩游离气传输方式分为过渡流、滑脱流和达西流三类,永川地区页岩游离气划分3种传输方式的临界孔径分别为4.2 nm和420 nm,在此基础上建立了全盆地页岩游离气传输图版;③从浅层到深层,页岩游离气不同传输方式对应的临界孔径随之变小,游离气传输方式从以过渡流为主(最高占比达63.0%)转变为以滑脱流为主(最高占比达67.3%),达西流占比不超过2%;页岩游离气传输能力从浅层到中层随埋深增加快速下降,中深层页岩游离气传输能力随埋深增加基本保持稳定。通过分析和对比深浅层页岩储层孔隙结构特征及游离气传输特征,研究成果可有力支撑深层页岩气乃至浅层页岩气下一步高效勘探开发方案的部署工作。

     

  • 图  1  川南深层龙马溪组龙一1亚段优质页岩储层孔隙不同类型孔隙发育形态

    a.蜂窝状有机质孔;b.有机质—黏土复合体孔隙;c.黄铁矿粒间孔,有机质孔;d.黏土矿物粒间孔;e.无机矿物溶蚀孔;f.有机质收缩缝。

    Figure  1.  Different types of pore development morphology of high-quality deep shale reservoirs in Long-1 submember of Longmaxi Formation in southern Sichuan

    图  2  川南深层龙马溪组龙一1亚段优质页岩微孔(a)、中孔(b)和宏孔(c)孔径分布特征及孔体积占比(d)

    Figure  2.  Pore diameters of micropores (a), mesopores (b), and macropores (c), and pore volume proportion (d) in high-quality deep shale in Long-1 submember of Longmaxi Formation in southern Sichuan

    图  3  四川盆地龙马溪组典型页岩气藏开发条件下的主要传输机理[9]

    Figure  3.  Main transport mechanism of typical shale gas reservoir in Longmaxi Formation in Sichuan Basin under development conditions

    图  4  四川盆地永川地区页岩纳米孔甲烷游离气流动方式与孔径的关系

    Figure  4.  Relationship between methane free gas flow mode and pore size in nanopores of shale in Yongchuan area, Sichuan Basin

    图  5  四川盆地龙马溪组页岩全盆地页岩游离气传输模板

    Figure  5.  Free gas transport template for Longmaxi Formation shale in Sichuan Basin

    图  6  考虑微尺度效应后的四川盆地页岩游离气不同传输方式对应的孔径范围

    Figure  6.  Pore size range corresponding to different transport modes of free gas considering microscale effect in Sichuan Basin

    图  7  四川盆地不同埋深条件下页岩地层纳米孔隙游离气不同传输方式对应的临界孔径

    Figure  7.  Critical pore sizes corresponding to different transport modes of free gas in shale pores under different burial depths in Sichuan Basin

    图  8  四川盆地不同埋深页岩纳米孔游离气不同传输方式占比

    Figure  8.  Proportion of different transport modes of free gas under different burial depths in Sichuan Basin

    图  9  四川盆地不同埋深条件下页岩游离气传输能力动态演化规律

    Figure  9.  Dynamic evolution of free gas transport capacity under different burial depths in Sichuan Basin

    表  1  川南深层龙马溪组龙一1亚段优质页岩样品基本信息

    Table  1.   Basic information of high-quality deep shale samples from Long-1 submember of Longmaxi Formation in southern Sichuan

    井号 样品编号 小层 ω(TOC)/% 硅质矿物含量/% 黏土矿物含量/% 碳酸盐矿物含量/% 岩相类型
    X2 1 3.56 45.2 39.1 14.1 混合质页岩
    X2 2 4.39 50.6 32.3 7.6 硅质页岩
    X2 3 5.04 65.3 13.2 20.0 硅质页岩
    X2 4 4.06 54.3 10.4 8.2 硅质页岩
    下载: 导出CSV
  • [1] 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm

    GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
    [2] 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htm

    GUO Xusheng, BORJIGIN Tenger, WEI Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htm
    [3] 姜振学, 梁志凯, 申颍浩, 等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 2023, 48(1): 110-129.

    JIANG Zhenxue, LIANG Zhikai, SHEN Yinghao, et al. Coupling key factors of shale gas sweet spot and research direction of geology-engineering integration in southern Sichuan[J]. Earth Science, 48(1): 110-129.
    [4] 苏海琨, 聂海宽, 郭少斌, 等. 深层页岩含气量评价及其差异变化: 以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815

    SU Haikun, NIE Haikuan, GUO Shaobin, et al. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
    [5] 王鹏万, 焦鹏飞, 贺训云, 等. 昭通示范区太阳—海坝浅层页岩气富集模式[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm

    WANG Pengwan, JIAO Pengfei, HE Xunyun, et al. Shallow shale gas enrichment model of Taiyang-Haiba in Zhaotong demonstration area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm
    [6] 国家能源局. 2022年全国油气勘探开发十大标志性成果[EB/OL]. (2023-01-20). http://www.nea.gov.cn/2023-01/20/c_1310692197.htm.

    National Energy Administration. Top 10 iconic achievements in national oil and gas exploration and development in 2022[EB/OL]. (2023-01-20). http://www.nea.gov.cn/2023-01/20/c_1310692197.htm.
    [7] 邹才能, 赵群, 王红岩, 等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htm

    ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htm
    [8] 李倩文, 唐令, 庞雄奇. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评, 2020, 66(2): 457-466. doi: 10.16509/j.georeview.2020.02.014

    LI Qianwen, TANG Ling, PANG Xiongqi. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 2020, 66(2): 457-466. doi: 10.16509/j.georeview.2020.02.014
    [9] 吴克柳, 陈掌星. 页岩气纳米孔气体传输综述[J]. 石油科学通报, 2016, 1(1): 91-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601008.htm

    WU Keliu, CHEN Zhangxing. Review of gas transport in nano-pores in shale gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1): 91-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601008.htm
    [10] 王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202009.htm

    WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202009.htm
    [11] 王国臻, 姜振学, 唐相路, 等. 四川盆地焦石坝地区龙马溪组页岩气不同传输类型的临界孔径与传输能力[J]. 地质学报, 2023, 97(1): 210-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202301014.htm

    WANG Guozhen, JIANG Zhenxue, TANG Xianglu, et al. Critical conditions and capabilities of shale gas diffusion and seepage types in the Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(1): 210-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202301014.htm
    [12] 吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507008.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507008.htm
    [13] KLINKENBERG L J. The permeability of porous media to liquids and gases[M]//Drilling and Production Practice. New York: American Petroleum Institute, 1941.
    [14] 袁竟舟, 叶玥豪, 徐昉昊, 等. 渝西—川南地区五峰组—龙马溪组深层页岩气储层岩相及孔隙特征[J]. 矿物岩石, 2022, 42(4): 104-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202204010.htm

    YUAN Jingzhou, YE Yuehao, XU Fanghao, et al. Lithofacies and pore characteristics of Wufeng-Longmaxi deep buried shale gas reservoirs in west Chongqing-south Sichuan area, China[J]. Mineralogy and Petrology, 2022, 42(4): 104-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202204010.htm
    [15] 王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996

    WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
    [16] 刘伟新, 卢龙飞, 魏志红, 等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 2020, 42(3): 378-386.

    LIU Weixin, LU Longfei, WEI Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geo-logy & Experiment, 220, 42(3): 378-386.
    [17] 王羿文. 泸州区块深层五峰—龙马溪组页岩储层特征[D]. 徐州: 中国矿业大学, 2022.

    WANG Yiwen. Deep shale reservoir characteristics of Wufeng-Longmaxi formation in Luzhou block[D]. Xuzhou: China University of Mining and Technology, 2022.
    [18] 魏富彬, 刘珠江, 陈斐然, 等. 川东南五峰组—龙马溪组深层、超深层页岩储层特征及其页岩气勘探意义[J]. 石油实验地质, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751

    WEI Fubin, LIU Zhujiang, CHEN Feiran, et al. Characteristics of the deep and ultra-deep shale reservoirs of the Wufeng-Longmaxi formations in the southeastern Sichuan Basin and the significance of shale gas exploration[J]. Petroleum Geology & Experiment, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751
    [19] 石学文, 吴伟, 胡海燕, 等. 泸州地区深层五峰—龙马溪组页岩气储层全孔径表征及其主控因素[J]. 地球科学, 2023, 48(1): 158-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301011.htm

    SHI Xuewen, WU Wei, HU Haiyan, et al. The whole apertures of deeply buried Wufeng-Longmaxi formation shale and their controlling factors in Luzhou district, Sichuan Basin[J]. Earth Science, 2023, 48(1): 158-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301011.htm
    [20] ZHANG Kun, JIANG Zhenxue, XIE Xuelian, et al. Lateral percolation and its effect on shale gas accumulation on the basis of complex tectonic background[J]. Geofluids, 2018, 2018: 5195469.
    [21] 冯动军, 胡宗全, 李双建, 等. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用[J]. 地质论评, 2021, 67(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101015.htm

    FENG Dongjun, HU Zongquan, LI Shuangjian, et al. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan Basin[J]. Geological Review, 2021, 67(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101015.htm
    [22] 王玉满, 黄金亮, 王淑芳, 等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016, 27(3): 423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm

    WANG Yuman, HUANG Jinliang, WANG Shufang, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm
    [23] FIROUZI M, ALNOAIMI K, KOVSCEK A, et al. Klinkenberg effect on predicting and measuring helium permeability in gas shales[J]. International Journal of Coal Geology, 2014, 123: 62-68.
    [24] MUKHERJEE M, VISHAL V. Gas transport in shale: a critical review of experimental studies on shale permeability at a mesoscopic scale[J]. Earth-Science Reviews, 2023, 244: 104522.
    [25] 李亚雄, 刘先贵, 胡志明, 等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 114702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201711022.htm

    LI Yaxiong, LIU Xiangui, HU Zhiming, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physica Sinica, 2017, 66(11): 114702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201711022.htm
    [26] WU Keliu, LI Xiangfang, WANG Chenchen, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorption[C]//Proceedings of SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, 2014.
    [27] 曹海涛, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素: 以四川盆地南部永川区块为例[J]. 天然气工业, 2019, 39(S1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm

    CAO Haitao, ZHAN Guowei, YU Xiaoqun, et al. Main influencing factors on the productivity of deep shale gas wells: taking the Yongchuan block in the southern Sichuan Basin as an example[J]. Natural Gas Industry, 2019, 39(S1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm
    [28] 郭彤楼, 熊亮, 雷炜, 等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm

    GUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, south Sichuan Basin: progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm
    [29] 倪楷, 王明筏, 李响. 四川盆地东南缘页岩气富集模式: 以丁山地区上奥陶统五峰组—下志留统龙马溪组页岩为例[J]. 石油实验地质, 2021, 43(4): 580-588. doi: 10.11781/sysydz202104580

    NI Kai, WANG Mingfa, LI Xiang. Enrichment model of shale gas in southeastern Sichuan Basin: a case study of Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in Dingshan area[J]. Petroleum Geology & Experiment, 2021, 43(4): 580-588. doi: 10.11781/sysydz202104580
    [30] 魏祥峰, 刘珠江, 王强, 等. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm

    WEI Xiangfeng, LIU Zhujiang, WANG Qiang, et al. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm
    [31] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm

    DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm
    [32] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm

    DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm
    [33] 吴克柳, 李相方, 陈掌星. 页岩气有机质纳米孔气体传输微尺度效应[J]. 天然气工业, 2016, 36(11): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. Micro-scale effects of gas transport in organic nanopores of shale gas reservoirs[J]. Natural Gas Industry, 2016, 36(11): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611012.htm
    [34] 吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学: 技术科学, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing, et al. The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs[J]. Scientia Sinica Technologica, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm
    [35] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm

    HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm
    [36] 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147

    WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147
    [37] 袁玉松, 方志雄, 何希鹏, 等. 彭水及邻区龙马溪组页岩气常压形成机制[J]. 油气藏评价与开发, 2020, 10(1): 9-16, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm

    YUAN Yusong, FANG Zhixiong, HE Xipeng, et al. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 9-16, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm
    [38] 魏祥峰, 赵正宝, 王庆波, 等. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价[J]. 地质论评, 2017, 63(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701018.htm

    WEI Xiangfeng, ZHAO Zhengbao, WANG Qingbo, et al. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation—Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, southeastern Sichuan[J]. Geological Review, 2017, 63(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701018.htm
    [39] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm

    HU Dongfeng. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi formations in synclines, southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  52
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 修回日期:  2023-10-27
  • 刊出日期:  2023-11-28

目录

    /

    返回文章
    返回