留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩孔喉结构分析与渗透率预测方法——以川中地区侏罗系沙溪庙组为例

陈少云 杨勇强 邱隆伟 王小娟 杨保良 叶热杰普·哈布腊什木

陈少云, 杨勇强, 邱隆伟, 王小娟, 杨保良, 叶热杰普·哈布腊什木. 致密砂岩孔喉结构分析与渗透率预测方法——以川中地区侏罗系沙溪庙组为例[J]. 石油实验地质, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202
引用本文: 陈少云, 杨勇强, 邱隆伟, 王小娟, 杨保良, 叶热杰普·哈布腊什木. 致密砂岩孔喉结构分析与渗透率预测方法——以川中地区侏罗系沙溪庙组为例[J]. 石油实验地质, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202
CHEN Shaoyun, YANG Yongqiang, QIU Longwei, WANG Xiaojuan, YANG Baoliang, Erejep HABILAXIM. Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202
Citation: CHEN Shaoyun, YANG Yongqiang, QIU Longwei, WANG Xiaojuan, YANG Baoliang, Erejep HABILAXIM. Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202

致密砂岩孔喉结构分析与渗透率预测方法——以川中地区侏罗系沙溪庙组为例

doi: 10.11781/sysydz202401202
基金项目: 

国家自然科学基金项目“咸化湖盆细粒物质的成因及其混合沉积作用” 41972099

“基于现代沉积和沉积模拟的湖相滩坝沉积模式与精细表征研究” 4217020246

详细信息
    作者简介:

    陈少云(1998-), 男, 硕士生, 主要从事储层沉积学研究。E-mail: chenshaoyun1998@163.com

    通讯作者:

    杨勇强(1982-), 男, 博士, 副教授, 主要从事沉积学、储层地质学研究。E-mail: yongqiangyang@upc.edu.cn

  • 中图分类号: TE122.2

Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin

  • 摘要: 致密砂岩储层孔喉结构精细表征和渗透性预测是优质储层评价和开发的关键。以川中地区侏罗系沙溪庙组为例,利用高压压汞实验和分形理论,对孔喉结构进行静态表征,探讨孔喉结构、分形维数、储层物性之间的关系,进而分析孔喉结构对渗透率的贡献,建立渗透率预测模型。沙溪庙组样品可分为4种类型:Ⅰ类样品排驱压力低、物性好、孔隙连通性好、平均分形维数为2.11,孔隙以半径大于0.1 μm的大孔和中孔为主,半径大于1 μm的孔喉贡献了90%以上的渗透率;Ⅱ类样品排驱压力在0.4~1.0 MPa之间,平均孔渗分别为9.72%、0.375×10-3 μm2,分形维数为2.20,半径大于0.1 μm的中孔含量上升,并贡献了大部分渗透率;Ⅲ、Ⅳ类样品排驱压力与分形维数明显高于Ⅰ、Ⅱ类样品,孔隙度低且缺乏大孔导致渗透率较低。半径大于0.1 μm的大孔和中孔贡献了沙溪庙组98%以上的渗透率。分形维数是指示孔喉结构的良好标志,分形维数与孔喉半径、最大进汞饱和度、渗透率均呈现明显的负相关关系,而与排驱压力、孔喉相对分选系数呈正相关关系。分形维数与孔喉组成有着强相关性,基于分形维数、孔隙度、最大孔喉半径建立了“孔隙型”储层渗透率定量预测模型。

     

  • 图  1  四川盆地构造分区与侏罗系岩性特征

    Figure  1.  Tectonic zoning map of Sichuan Basin and lithologic characteristics of Jurassic

    图  2  川中侏罗系沙溪庙组致密砂岩储层岩石学与物性分布特征

    Figure  2.  Petrological characteristics and physical property distribution of tight sandstone reservoir in Jurassic Shaximiao Formation, central Sichuan Basin

    图  3  川中侏罗系沙溪庙组致密砂岩孔喉微观特征

    a.原生粒间孔,永浅1井,2 260.77 m;b.原生粒间孔隙,永浅1井,2 184.34 m;c.自生石英充填原生粒间孔隙,长石溶蚀,秋林21井,2 459.13 m;d.铸模孔、原生孔基础上溶蚀形成的复合孔隙,永浅1井,2 256.13 m;e.长石严重溶蚀,秋林21井,2 459.13 m;f.绿泥石未被完全包裹的长石发生溶蚀,周边伴随自生钠长石,秋林18井,2 103.88 m;g.长石与火山岩岩屑发生溶蚀,边缘存在粒间孔,永浅1井,2 200.36 m;h.浊沸石沿着解理缝发生溶蚀,伴随发育微裂缝,中浅1井,2 669.00 m;i.石英颗粒溶蚀形成纳米级孔隙,永浅1井,2 189.20 m;j.伊利石充填孔隙,并发育伊利石晶间孔,永浅1井,2 256.13 m;k.伊利石晶间孔,秋林202井,2 274.63 m;l.云母层间孔,永浅1井,2 188.65 m;m.板状喉道,秋林18井,2 103.88 m;n.缩颈状喉道,秋林18井,2 103.88 m;o.孔隙缩小型喉道,永浅1井,2 252.43 m。

    Figure  3.  Microscopic characteristics of pore throat of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  4  川中侏罗系沙溪庙组致密砂岩不同类型样品的毛细管压力曲线、孔喉分布与孔喉含量特征

    Figure  4.  Capillary pressure curves, pore throat distribution and pore throat content characteristics of different types of tight sandstone samples in Jurassic Shaximiao Formation, central Sichuan Basin

    图  5  川中侏罗系沙溪庙组致密砂岩不同类型样品的孔喉结构参数与物性对比

    Figure  5.  Comparison of pore throat structure parameters and physical properties of different types of tight sandstone samples in Jurassic Shaximiao Formation, central Sichuan Basin

    图  6  川中侏罗系沙溪庙组致密砂岩孔喉分形曲线

    Figure  6.  Pore throat fractal curves of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  7  川中侏罗系沙溪庙组致密砂岩分形维数与储层物性、孔喉结构关系

    Figure  7.  Relations of fractal dimension with reservoir physical property and pore throat structure of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  8  川中侏罗系沙溪庙组致密砂岩孔喉分布频率与渗透率贡献度、分形维数的关系

    Figure  8.  Relations of pore throat distribution frequency with permeability contribution and fractal dimension of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  9  川中侏罗系沙溪庙组致密砂岩孔喉分布对渗透率的控制作用

    Figure  9.  Controlling effect of pore throat distribution on permeability of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  10  川中侏罗系沙溪庙组致密砂岩孔喉相对百分含量与渗透率贡献柱状图

    Figure  10.  Bar chart of relative percentage of pore throat content and permeability contribution of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    图  11  川中侏罗系沙溪庙组致密砂岩实测渗透率与孔隙度、预测渗透率交会图

    Figure  11.  Cross plots of measured permeability with porosity and predicted permeability of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    表  1  川中侏罗系沙溪庙组致密砂岩高压压汞实验数据与分形维数

    Table  1.   Data and fractal dimension of high pressure mercury injection experiment of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    编号 深度/m Ra/μm Rp/μm Pcd/MPa Smax/% Sr/% Sp Df Φ/% K/10-3 μm2 类型
    1 1 989.92 0.358 0.112 2.055 64.647 37.269 2.374 2.247 5.712 0.036
    2 1 990.86 0.267 0.099 2.750 53.728 32.934 2.253 2.250 6.173 0.028
    3 2 001.93 1.087 0.210 0.676 75.730 46.153 2.810 2.265 7.452 0.085
    4 2 004.43 1.086 0.294 0.677 62.411 43.635 2.981 2.240 8.712 0.294
    5 2 009.09 1.086 0.244 0.677 73.665 44.017 2.907 2.221 8.712 0.228
    6 2 011.08 1.087 0.308 0.676 60.070 41.364 3.034 2.198 9.737 0.461
    7 2 014.04 1.087 0.290 0.676 61.743 43.857 3.003 2.225 9.557 0.320
    8 2 018.23 0.053 0.015 13.779 42.776 29.302 1.106 2.785 6.718 0.291
    9 2 029.94 0.538 0.156 1.366 70.785 51.862 2.561 2.242 11.730 0.129
    10 2 034.23 1.087 0.354 0.676 90.474 72.657 2.699 2.137 15.261 0.497
    11 2 036.69 1.087 0.197 0.676 71.386 52.865 2.726 2.212 12.413 0.220
    12 2 048.33 1.087 0.314 0.676 65.348 45.388 3.063 2.189 9.037 0.369
    13 2 070.04 1.090 0.262 0.675 60.806 33.866 2.906 2.173 6.532 0.191
    14 2 105.19 0.053 0.015 13.773 49.683 33.196 1.157 2.741 4.698 0.107
    15 2 110.78 0.269 0.081 2.735 63.847 37.899 2.210 2.326 7.495 8.919
    16 2 130.34 1.086 0.316 0.677 45.235 29.699 2.928 2.199 12.095 0.661
    17 2 138.45 0.133 0.039 5.511 41.408 28.434 1.665 2.331 5.172 0.361
    18 2 160.82 0.268 0.100 2.740 68.555 41.799 2.295 2.243 4.390 0.029
    19 2 163.37 2.796 0.731 0.263 73.509 52.679 3.528 2.165 11.214 1.569
    20 2 180.85 0.537 0.161 1.370 43.286 29.713 2.504 2.238 5.375 0.030
    21 2 183.24 1.566 0.382 0.469 70.452 47.995 3.188 2.188 12.223 0.481
    22 2 186.28 2.750 0.654 0.267 67.665 45.720 3.444 2.141 8.771 1.090
    23 2 190.69 6.668 1.574 0.110 73.386 51.757 3.999 2.130 14.656 6.341
    24 2 194.69 5.337 1.121 0.138 67.981 50.614 3.808 2.135 14.681 4.995
    25 2 199.77 1.550 0.453 0.474 69.515 44.099 3.231 2.159 9.645 0.834
    26 2 226.11 0.134 0.046 5.503 56.045 35.925 1.846 2.338 3.529 0.027
    27 2 249.29 0.537 0.130 1.368 58.891 33.227 2.430 2.264 5.898 0.028
    28 2 250.61 2.780 0.598 0.264 73.366 54.778 3.430 2.144 10.234 2.164
    29 2 253.21 2.776 0.683 0.265 88.211 49.961 3.029 2.073 9.572 1.647
    30 2 255.25 6.670 1.605 0.110 74.285 44.024 4.006 2.047 17.502 17.422
    31 2 259.85 2.747 0.640 0.268 57.631 29.178 3.301 2.068 22.283 2.132
    32 2 261.41 5.338 1.049 0.138 94.218 57.087 2.846 2.065 13.585 4.255
    33 2 261.92 1.073 0.363 0.685 83.820 56.418 3.137 2.133 5.032 0.237
    下载: 导出CSV

    表  2  川中侏罗系沙溪庙组致密砂岩渗透率与分形维数、孔隙度、孔喉半径相关性

    Table  2.   Relations of permeability with fractal dimension, porosity and pore throat radius of tight sandstones in Jurassic Shaximiao Formation, central Sichuan Basin

    公式 相关系数(R2)
    lgK=4.452Df+2.014lgRa+0.065Φ-10.588 0.900
    lgK=2.092Df+1.370lgR15+0.083Φ-5.545 0.817
    lgK=4.580Df+1.930lgR20+0.071Φ-10.549 0.888
    lgK=2.466Df+1.276lgR25+0.085Φ-6.090 0.811
    lgK=-5.042Df+0.209lgR50+0.083Φ+10.132 0.650
    lgK=4.690Df+2.236lgRp+0.055Φ-10.111 0.896
    注:RaRp分别代表最大连通孔喉半径与平均孔喉半径,R15R20R25R50分别对应进汞饱和度为15%、20%、25%、50%时的孔喉半径。
    下载: 导出CSV
  • [1] 邹才能, 翟光明, 张光亚, 等. 全球常规—非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.

    ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
    [2] 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001

    LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001
    [3] 赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petro-leum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [4] 徐君, 杨春, 孟朋飞. 吐哈探区非常规油气资源开发策略[J]. 新疆石油地质, 2023, 44(3): 314-320.

    XU Jun, YANG Chun, MENG Pengfei. Development strategies for unconventional oil and gas resources in Turpan-Hami exploration area[J]. Xinjiang Petroloeum Geology, 2023, 44(3): 314-320.
    [5] 张仲培, 张宇, 张明利, 等. 准噶尔盆地中部凹陷区二叠系—三叠系油气成藏主控因素与勘探方向[J]. 石油实验地质, 2022, 44(4): 559-568. doi: 10.11781/sysydz202204559

    ZHANG Zhongpei, ZHANG Yu, ZHANG Mingli, et al. Main control-ling factors and exploration direction of Permian to Triassic reservoir in the central sag of Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 559-568. doi: 10.11781/sysydz202204559
    [6] 郝牧歌, 张金功, 马士磊. 从常规与非常规油气成藏的正相关性角度预测有利区: 以孤岛1号凹隆域低部位为例[J]. 油气地质与采收率, 2022, 29(4): 46-56.

    HAO Muge, ZHANG Jingong, MA Shilei, et al. Favorable area prediction from perspective of positive accumulation correlation between conventional and unconventional oil and gas reservoirs: a case of low part in Gudao No. 1 sag-uplift band[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 46-56.
    [7] 徐旭辉, 周卓明, 宋振响, 等. 油气资源评价方法关键参数研究和资源分布特征: 以中国石化探区"十三五"资源评价为例[J]. 石油实验地质, 2023, 45(5): 832-843. doi: 10.11781/sysydz202305832

    XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al. Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource: a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J]. Petroleum Geology & Experiment, 2023, 45(5): 832-843. doi: 10.11781/sysydz202305832
    [8] 程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [9] 徐延勇, 申建, 张兵, 等. 鄂尔多斯盆地中东部上古生界致密气成藏条件差异性分析[J]. 断块油气田, 2022, 29(5): 577-583.

    XU Yanyong, SHEN Jian, ZHANG Bing, et al. Analysis on differences of tight gas accumulation conditions of Upper Paleozoic in central and eastern Ordos Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 577-583.
    [10] 刘俊田, 谢佃和, 彭亚中, 等. 胜北构造带致密气成藏机理及富集规律[J]. 特种油气藏, 2022, 29(5): 18-27.

    LIU Juntian, XIE Dianhe, PENG Yazhong, et al. Accumulation mechanism and enrichment law of tight gas in Shengbei Structural Zone[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 18-27.
    [11] 孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026.

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characte-ristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
    [12] YANG Wenze, HOU Jiagen, LIU Yuming, et al. The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: a case study from the Es4 member of the northern steep slope in Dongying Depression, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2022, 136: 105481. doi: 10.1016/j.marpetgeo.2021.105481
    [13] 王南, 裴玲, 雷丹凤, 等. 中国非常规天然气资源分布及开发现状[J]. 油气地质与采收率, 2015, 22(1): 26-31. doi: 10.3969/j.issn.1009-9603.2015.01.005

    WANG Nan, PEI Ling, LEI Danfeng, et al. Analysis of unconventional gas resources distribution and development status in China[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 26-31. doi: 10.3969/j.issn.1009-9603.2015.01.005
    [14] 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1): 12-24.

    YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 12-24.
    [15] 黄东, 李育聪, 刘敏, 等. 川中地区中侏罗统沙溪庙组一段油气藏特征及勘探潜力评价[J]. 中国石油勘探, 2017, 22(2): 44-49. doi: 10.3969/j.issn.1672-7703.2017.02.005

    HUANG Dong, LI Yucong, LIU Min, et al. Reservoir features and exploration potential of the 1st member of Shaximiao Formation of Middle Jurassic in central Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(2): 44-49. doi: 10.3969/j.issn.1672-7703.2017.02.005
    [16] 肖富森, 韦腾强, 王小娟, 等. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.

    XIAO Fusen, WEI Tengqiang, WANG Xiaojuan, et al. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(9): 1216-1224.
    [17] 唐大海, 谭秀成, 涂罗乐, 等. 川中—川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化[J]. 成都理工大学学报(自然科学版), 2020, 47(4): 460-471. doi: 10.3969/j.issn.1671-9727.2020.04.08

    TANG Dahai, TAN Xiucheng, TU Luole, et al. Control factors and pore evolution of tight sandstone reservoir of the second member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(4): 460-471. doi: 10.3969/j.issn.1671-9727.2020.04.08
    [18] 韦腾强, 张本健, 王小娟, 等. 四川盆地秋林地区侏罗系沙溪庙组二段河流相沉积特征及储集差异性分析[J]. 科学技术与工程, 2021, 21(29): 12438-12446. doi: 10.3969/j.issn.1671-1815.2021.29.012

    WEI Tengqiang, ZHANG Benjian, WANG Xiaojuan, et al. Sedimentary characteristics of fluvial facies and analysis of reservoir differences in the second member of Jurassic Shaximiao Formation in Qiulin area, Sichuan Basin[J]. Science Technology and Engineering, 2021, 21(29): 12438-12446. doi: 10.3969/j.issn.1671-1815.2021.29.012
    [19] 吴浩, 张春林, 纪友亮, 等. 致密砂岩孔喉大小表征及对储层物性的控制: 以鄂尔多斯盆地陇东地区延长组为例[J]. 石油学报, 2017, 38(8): 876-887.

    WU Hao, ZHANG Chunlin, JI Youliang, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties: a case study of Yanchang Formation, eastern Gansu, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 876-887.
    [20] XI Kelai, CAO Yingchang, HAILE B G, et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones?The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2016, 76: 1-15. doi: 10.1016/j.marpetgeo.2016.05.001
    [21] 白斌, 朱如凯, 吴松涛, 等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探, 2014, 19(3): 78-86. doi: 10.3969/j.issn.1672-7703.2014.03.010

    BAI Bin, ZHU Rukai, WU Songtao, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78-86. doi: 10.3969/j.issn.1672-7703.2014.03.010
    [22] LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003
    [23] LI Zhen, WU Shenghe, XIA Dongling, et al. An investigation into pore structure and petrophysical property in tight sandstones: a case of the Yanchang Formation in the southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 97: 390-406. doi: 10.1016/j.marpetgeo.2018.07.014
    [24] NABAWY B S, GÉRAUD Y, ROCHETTE P, et al. Pore-throat characterization in highly porous and permeable sandstones[J]. AAPG Bulletin, 2009, 93(6): 719-739.
    [25] 窦文超, 刘洛夫, 吴康军, 等. 基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响: 以鄂尔多斯盆地西南部三叠系延长组长7储层为例[J]. 地质论评, 2016, 62(2): 502-512.

    DOU Wenchao, LIU Luofu, WU Kangjun, et al. Pore structure characteristics and its effect on permeability by mercury injection measurement: an example from Triassic Chang-7 reservoir, southwest Ordos Basin[J]. Geological Review, 2016, 62(2): 502-512.
    [26] LI Peng, ZHENG Min, BI He, et al. Pore throat structure and fractal characteristics of tight oil sandstone: a case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674.
    [27] LAI Jin, WANG Guiwen. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 185-196.
    [28] GUO Ruiling, XIE Qichao, QU Xuefeng, et al. Fractal characteristics of pore-throat structure and permeability estimation of tight sandstone reservoirs: a case study of Chang 7 of the Upper Triassic Yanchang Formation in Longdong area, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106555.
    [29] HU Yunbing, GUO Yinghai, SHANGGUAN Jingwen, et al. Fractal characteristics and model applicability for pores in tight gas sandstone reservoirs: a case study of the Upper Paleozoic in Ordos Basin[J]. Energy & Fuels, 2020, 34(12): 16059-16072.
    [30] 王伟, 陈朝兵, 许爽, 等. 鄂尔多斯盆地延长组致密砂岩不同尺度孔喉分形特征及其控制因素[J]. 石油实验地质, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033

    WANG Wei, CHEN Chaobing, XU Shuang, et al. Fractal characteristics and its controlling factors of pore-throat with different scales in tight sandstones of the Yanchang Formation in the Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033
    [31] 李大勇, 臧士宾, 任晓娟, 等. 用分形理论研究低渗储层孔隙结构[J]. 辽宁化工, 2010, 39(7): 723-726.

    LI Dayong, ZANG Shibin, REN Xiaojuan, et al. Study on pore structure of low permeability reservoirs with fractal theory[J]. Liaoning Chemical Industry, 2010, 39(7): 723-726.
    [32] 张全培, 王海红, 刘美荣, 等. 超低渗透储层全孔径分布及其分形特征研究[J]. 中国矿业大学学报, 2020, 49(6): 1137-1149.

    ZHANG Quanpei, WANG Haihong, LIU Meirong, et al. Study of the full pore size distribution and fractal characteristics of ultra-low permeability reservoir[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1137-1149.
    [33] 王学军, 杨志如, 韩冰. 四川盆地叠合演化与油气聚集[J]. 地学前缘, 2015, 22(3): 161-173.

    WANG Xuejun, YANG Zhiru, HAN Bing. Superposed evolution of Sichuan Basin and its petroleum accumulation[J]. Earth Science Frontiers, 2015, 22(3): 161-173.
    [34] 刘树根, 李智武, 孙玮, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1): 233-257.

    LIU Shugen, LI Zhiwu, SUN Wei, et al. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(1): 233-257.
    [35] 郝毅, 倪超, 陈薇, 等. 川中中侏罗统凉高山组—下沙溪庙组储层特征[J]. 四川地质学报, 2013, 33(2): 154-157.

    HAO Yi, NI Chao, CHEN Wei, et al. Reservoir characteristics and control factors of the Middle Jurassic Lianggaoshan and Lower Shaximiao Formations in central Sichuan[J]. Acta Geologica Sichuan, 2013, 33(2): 154-157.
    [36] 刘占国, 陈娅娜, 倪超, 等. 川中地区中—下侏罗统砂岩储层特征[J]. 西南石油大学学报(自然科学版), 2010, 32(2): 35-40.

    LIU Zhanguo, CHEN Yana, NI Chao, et al. Characteristics of sandstone reservoirs of Middle-Lower Jurassic in central Sichuan area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(2): 35-40.
    [37] 杨跃明, 杨家静, 杨光, 等. 四川盆地中部地区侏罗系致密油研究新进展[J]. 石油勘探与开发, 2016, 43(6): 873-882.

    YANG Yueming, YANG Jiajing, YANG Guang, et al. New research progress of Jurassic tight oil in central Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(6): 873-882.
    [38] LI Kewen. Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity[J]. Journal of Petroleum Science and Engineering, 2010, 73(1/2): 20-26.
    [39] 冯阵东, 周永, 吴伟, 等. 非均质砂岩储层压汞分形特征与储层评价[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 25-34.

    FENG Zhendong, ZHOU Yong, WU Wei, et al. Mercury injection fractal characteristics and reservoir evaluation of heterogeneous sandstone reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(6): 25-34.
    [40] WU Jun, FAN Tailiang, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 557-579.
    [41] 邓浩阳, 司马立强, 吴玟, 等. 致密砂岩储层孔隙结构分形研究与渗透率计算: 以川西坳陷蓬莱镇组沙溪庙组储层为例[J]. 岩性油气藏, 2018, 30(6): 76-82.

    DENG Haoyang, SIMA Liqiang, WU Wen, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs: a case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression[J]. Lithologic Reservoirs, 2018, 30(6): 76-82.
    [42] ZHANG Luchuan, LU Shuangfang, XIAO Dianshi, et al. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Marine and petroleum geology, 2017, 88: 170-180.
    [43] XIAO Liang, LIU Die, WANG Hua, et al. The applicability analysis of models for permeability prediction using mercury injection capillary pressure (MICP) data[J]. Journal of Petroleum Science and Engineering, 2017, 156: 589-593.
    [44] GUO Boyun, GHALAMBOR A, DUAN Shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2004, 43(3/4): 239-246.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  42
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-12-01
  • 刊出日期:  2024-01-28

目录

    /

    返回文章
    返回