Xu Liangwei, Liu Luofu, Liu Zufa, Meng Zhaoping. Adsorption capacity and controlling mechanisms of Paleozoic shales in Yangtze region[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(6): 732-741. doi: 10.11781/sysydz201606732
Citation: Xu Liangwei, Liu Luofu, Liu Zufa, Meng Zhaoping. Adsorption capacity and controlling mechanisms of Paleozoic shales in Yangtze region[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2016, 38(6): 732-741. doi: 10.11781/sysydz201606732

Adsorption capacity and controlling mechanisms of Paleozoic shales in Yangtze region

doi: 10.11781/sysydz201606732
  • Received Date: 2016-04-25
  • Rev Recd Date: 2016-08-29
  • Publish Date: 2016-11-28
  • As a gas-rich shale layer, the Paleozoic in Yangtze region is a main target for shale gas exploration and development in China. Adsorption state is one of the most important occurrence modes of shale gas; hence it is very necessary to study the adsorption capacity and controlling mechanisms of shales. We collected some shale samples from Paleozoic in Yangtze area, and then carried out TOC analysis, Rock-Eval, XRD and water content analyses, isothermal adsorption experiments, and ultra-high pressure isothermal adsorption experiments. The adsorption properties of shales vary during different ages and in different areas due to the combined effects of TOC content and mineral composition. The TOC content and methane adsorption of shales do not have a positive relationship as proposed by previous researchers, because that shale samples are limited and are in the high-mature and over-mature stages. The methane adsorption isotherms of kerogens in different ages show that older kerogens have a stronger methane adsorption capacity. Removing the effects of organic matter abundance and maturity, the kerogens of type Ⅲ adsorb more methane than those of type Ⅱ. If organic matter abundance and type are the same, the methane adsorption amount of high maturity kerogen is more than that of low maturity kerogen. Soluble organic matter can dissolve and adsorb methane, and hence improve the methane adsorption capacity of shales. The relationship between clay mineral and methane adsorption which is normalized by TOC is not obvious, this is mainly because the samples contain water. Maturity, porosity and permeability may affect the maximum methane adsorption of shales. Compared with low pressure, the methane adsorption characteristics under high pressure have a certain continuity. There are several influencing factors, which demand deep research to reveal the influence of each single factor on shale adsorption characteristics.

     

  • loading
  • [1]
    张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18. Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng.Reservoiring me-chanism of shale gas and its distribution[J].Natural Gas Indu-stry,2004,24(7):15-18.
    [2]
    聂海宽,张金川.页岩气藏分布地质规律与特征[J].中南大学学报(自然科学版),2010,41(2):700-708. Nie Haikuan,Zhang Jinchuan.Shale gas reservoir distribution geolo-gical law,characteristics and suggestions[J].Journal of Central South University (Science and Technology),2010,41(2):700-708.
    [3]
    Curtis J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
    [4]
    Montgomery S L,Jarvie D M,Bowker K A,et al.Mississippian Barnett shale,Fort Worth Basin,north-central Texas:Gas-shale play with multi-trillion cubic foot potential[J].AAPG Bulletin,2006,90(6):967-969.
    [5]
    Lu Xiaochun,Li Fanchang,Watson A T.Adsorption measurements in Devonian shales[J].Fuel,1995,74(4):599-603.
    [6]
    Chalmers G R L,Bustin R M.Lower Cretaceous gas shales in northeastern British Columbia,partⅠ:Geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56(1):1-21.
    [7]
    Zhang Tongwei,Ellis G S,Ruppel S C,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47:120-131.
    [8]
    刘祖发,李强强,关帅,等.南方古生界页岩吸附特征及主控因素[J].天然气地球科学,2015,26(9):1689-1695. Liu Zufa,Li Qiangqiang,Guan Shuai,et al.Adsorption characteristics and main controlling factors on the Paleozoic shale in South China region[J].Natural Gas Geoscience,2015,26(9):1689-1695.
    [9]
    Wang Chengcai,Juang L C,Lee C K,et al.Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite[J].Journal of Colloid and Interface Science,2004,280(1):27-35.
    [10]
    Aringhieri R.Nanoporosity characteristics of some natural clay minerals and soils[J].Clay and Clay Minerals,2004,52(6):700-704.
    [11]
    田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502. Tian Hua,Zhang Shuichang,Liu Shaobo,et al.The dual influence of shale composition and pore size on adsorption gas sto-rage mechanism of organic-rich shale[J].Natural Gas Geoscience,2016,27(3):494-502.
    [12]
    吴艳艳,曹海虹,丁安徐,等.页岩气储层孔隙特征差异及其对含气量影响[J].石油实验地质,2015,37(2):231-236. Wu Yanyan,Cao Haihong,Ding Anxu,et al.Pore characteristics of a shale gas reservoir and its effect on gas content[J].Petro-leum Geology & Experiment,2015,37(2):231-236.
    [13]
    陈磊,姜振学,邢金艳,等.川西坳陷新页HF-1井须五段泥页岩吸附气含量主控因素及其定量预测模型[J].现代地质,2014,28(4):824-831. Chen Lei,Jiang Zhenxue,Xing Jinyan,et al.Main controlling factors and prediction model of adsorbed gas content in the fifth member of Xujiahe Formation from well Xinye HF-1,Western Sichuan Depression[J].Geoscience,2014,28(4):824-831.
    [14]
    邢金艳,姜振学,陈磊,等.泥页岩吸附气量随地层埋深变化趋势预测分析[J].现代地质,2014,28(5):1041-1045. Xing Jinyan,Jiang Zhenxue,Chen Lei,et al.Reasonable utilization of isothermal adsorption experiment data to predict the shale adsorbed gas content changing with burial depth[J].Geoscience,2014,28(4):1041-1045.
    [15]
    赵玉集,郭为,熊伟,等.页岩等温吸附/解吸影响因素研究[J].天然气地球科学,2014,25(6):940-946. Zhao Yuji,Guo Wei,Xiong Wei,et al.Study of impact factors on shale gas adsorption and desorption[J].Natural Gas Geoscience,2014,25(6):940-946.
    [16]
    刘国恒,黄志龙,姜振学,等.湖相页岩液态烃对页岩吸附气实验的影响:以鄂尔多斯盆地延长组页岩为例[J].石油实验地质,2015,37(5):648-653. Liu Guoheng,Huang Zhilong,Jiang Zhenxue,et al.Effect of li-quid hydrocarbons on gas adsorption in alacustrine shale:A case study of the Yanchang Formation,Ordos Basin[J].Petro-leum Geology & Experiment,2015,37(5):648-653.
    [17]
    伍岳,樊太亮,蒋恕,等.四川盆地南缘上奥陶统五峰组-下志留统龙马溪组页岩矿物组成与脆性特征[J].油气地质与采收率,2015,22(4):59-63. Wu Yue,Fan Tailiang,Jiang Shu,et al.Mineralogy and brittleness features of the shale in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in southern Sichuan Basin[J].Petroleum Geology and Recovery Efficiency,2015,22(4):59-63.
    [18]
    李志鹏.中上扬子五峰组页岩有机质丰度恢复及评价[J].特种油气藏,2015,22(2):13-17. LI Zhipeng.Shale organic matter abundance recovery and evaluation of Wufeng Formation in Middle-Upper Yangtze[J].Special Oil & Gas Reservoirs,2015,22(2):13-17.
    [19]
    聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491. Nie Haikuan,Tang Xuan,Bian Ruikang.Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J].Acta Petrolei Sinica,2009,30(4):484-491.
    [20]
    董大忠,程克明,王玉满,等.中国上扬子区下古生界页岩气形成条件及特征[J].石油与天然气地质,2010,31(3):288-299. Dong Dazhong,Cheng Keming,Wang Yuman,et al.Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region,China[J].Oil & Gas Geology,2010,31(3):288-299.
    [21]
    石创,徐思煌,拜文华,等.湖北及周缘五峰组-龙马溪组页岩气资源潜力[J].特种油气藏,2015,22(6):65-69. Shi Chuang,Xu Sihuang,Bai Wenhua,et al.Shale gas resource potential of Wufeng-Longmaxi Formationsin Hubei and its periphery[J].Special Oil & Gas Reservoirs,2015,22(6):65-69.
    [22]
    余川,程礼军,曾春林,等.渝东北地区下古生界页岩含气性主控因素分析[J].断块油气田,2014,21(3):296-300. Yu Chuan,Cheng Lijun,Zeng Chunlin,et al.Main controlling factor analysis on gas-bearing property of Lower Paleozoic shale in northeastern Chongqing region[J].Fault-Block Oil and Gas Field,2014,21(3):296-300.
    [23]
    任泽樱,刘洛夫,高小跃,等.库车坳陷东北部侏罗系泥页岩吸附能力及影响因素分析[J].天然气地球科学,2014,25(4):632-640. Ren Zeying,Liu Luofu,Gao Xiaoyue,et al.Adsorption capacity and its influence factors of the Jurassic shale in the North-Eastern Kuqa Depression[J].Natural Gas Geoscience,2014,25(4):632-640.
    [24]
    吉利明,邱军利,张同伟,等.泥页岩主要黏土矿物组分甲烷吸附实验[J].地球科学-中国地质大学学报,2012,37(5):1043-1050. Ji Liming,Qiu Junli,Zhang Tongwei,et al.Experiments on methane adsorption of common clay minerals in shale[J].Earth Science-Journal of China University of Geosciences,2012,37(5):1043-1050.
    [25]
    Ross D J K,Marc Bustin R.Impact of mass balance calculations on adsorption capacities in microporous shale gas reservoirs[J].Fuel,2007,86(17/18):2696-2706.
    [26]
    Hildenbrand A,Krooss B M,Busch A,et al.Evolution of methane sorption capacity of coal seams as a function of burial history:A case study from the Campine Basin,NE Belgium[J].International Journal of Coal Geology,2006,66(3):179-203.
    [27]
    曹涛涛,宋之光,王思波,等.不同页岩及干酪根比表面积和孔隙结构的比较研究[J].中国科学:地球科学,2015,45(2):139-151. Cao Taotao,Song Zhiguang,Wang Sibo,et al.A comparative study of the specific surface area and pore structure of different shales and their kerogens[J].Science China Earth Sciences,2015,58(4):510-522.
    [28]
    Bowker K A.Barnett shale gas production,Fort Worth Basin:Issues and discussion[J].AAPG Bulletin,2007,91(4):523-533.
    [29]
    朱晓军,蔡进功.泥质烃源岩的比表面与有机质关系研究进展及意义[J].石油与天然气地质,2012,33(3):375-384. Zhu Xiaojun,Cai Jingong.Progress and significance of research on relation between specific surface area and organic matter in argillaceous source rocks[J].Oil & Gas geology,2012,33(3):375-384.
    [30]
    李颖莉,蔡进功.泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响[J].石油实验地质,2014,36(3):352-358. Li Yingli,Cai Jingong.Effect of smectite illitization on shale gas occurrence in argillaceous source rocks[J].Petroleum Geology & Experiment,2014,36(3):352-358.
    [31]
    王燕,冯明刚,魏祥峰,等.焦石坝页岩气储层黏土组分特征及其体积分数计算[J].断块油气田,2015,22(3):301-304. Wang Yan,Feng Minggang,Wei Xiangfeng,et al.Clay mineral component characteristics and volume fraction calculation for Jiaoshiba shale gas reservoir[J].Fault-Block Oil and Gas Field,2015,22(3):301-304.
    [32]
    马勇,钟宁宁,程礼军,等.渝东南两套富有机质页岩的孔隙结构特征:来自FIB-SEM的新启示[J].石油实验地质,2015,37(1):109-116. Ma Yong,Zhong Ningning,Cheng Lijun,et al.Pore structure of two organic-rich shales in southeastern Chongqing area:Insight from Focused Ion Beam Scanning Electron Microscope (FIB-SEM)[J].Petroleum Geology & Experiment,2015,37(1):109-116.
    [33]
    赵杏媛,张有喻.粘土矿物与粘土矿物分析[M].北京:海洋出版社,1990. Zhao Xingyuan,Zhang Youyu.Clay minerals and clay mineral analysis[M].Beijing:China Ocean Press,1990.
    [34]
    Kennedy M J,Pevear D R,Hill R J.Mineral surface control of organic carbon in black shale[J].Science,2002,295(5555):657-660.
    [35]
    Ross D J K,Bustin R M.Shale gas potential of the Lower Jurassic Gordondale Member,northeastern British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75.
    [36]
    付广,庞雄奇,杨勉,等.天然气运聚相态及其研究意义[J].中国海上油气(地质),2000,14(2):112-117. Fu Guang,Pang Xiongqi,Yang Mian,et al.Phases of gas in migration and accumulation and their significances[J].China Offshore Oil and Gas (Geology),2000,14(2):112-117.
    [37]
    王茂桢,柳少波,任拥军,等.页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J].地质论评,2015,61(1):207-216. Wang Maozhen,Liu Shaobo,Ren Yongjun,et al.Pore characte-ristics and methane adsorption of clay minerals in shale gas re-servoir[J].Geological Review,2015,61(1):207-216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (722) PDF downloads(309) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return