Yin Mengsha, Huang Haiping. Pore space restrictions on microbial activities in the Second White Specks shale of the Western Canada Sedimentary Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(4): 544-555. doi: 10.11781/sysydz201704544
Citation: Yin Mengsha, Huang Haiping. Pore space restrictions on microbial activities in the Second White Specks shale of the Western Canada Sedimentary Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(4): 544-555. doi: 10.11781/sysydz201704544

Pore space restrictions on microbial activities in the Second White Specks shale of the Western Canada Sedimentary Basin

doi: 10.11781/sysydz201704544
  • Received Date: 2017-01-18
  • Rev Recd Date: 2017-05-18
  • Publish Date: 2017-07-28
  • A suit of thirteen shallow biogenic gas source rock samples taken from the Second White Specks Formation (2WS) in well A at South Alberta Gas Field (SAGF), Western Canada Sedimentary Basin (WCSB) were analyzed by a laser particle size analyzer, nitrogen adsorption and GC-MS to obtain grain size, surface area, pore size distribution, and hydrocarbon molecular compositions, in order to get an insight into the constraining effects of pore space on microbial activity within shallow buried source rocks. The samples are organic rich with high TOC values, shallowly buried and immature, which are suitable for microbial activity. Pore size distributions derived from nitrogen adsorption isotherms illustrate the dominance of mesopores (2-50 nm). Molecular geochemical parameter analysis indicates that the compositions of extractable organic matter are basically attributed to the variation of source input with no solid evidence of biodegradation. The analysis of pore size distribution shows that very limited portion of pores with diameter over 200 nm cannot sustain extensive microbial activity, which possibly accounts for the slight biodegradation of organic matter in shale. Biogenic source rocks capable of generating large amount of biogenic gas are supposed to have a large proportion of pores larger than 200 nm. Traditional schemes for potential biogenic gas source rock assessment may have neglected the decisive role of shale pore space in bacteria activity.

     

  • loading
  • [1]
    Peters K E,Walters C C,Moldwan J M.The biomarker guide:Volume 2-Biomarkers and isotopes in petroleum systems and earth history[M].2nd ed.Cambridge,UK:Cambridge University Press,2007.
    [2]
    惠荣耀,李剑,张英,等.生物气源岩评价方法[J].天然气工业,2009,29(2):18-22. Hui Rongyao,Li Jian,Zhang Ying,et al.A study on evaluation procedures of biogas source rocks[J].Natural Gas Industry,2009,29(2):18-22.
    [3]
    穆亚蓬,王万春,宋振响.生物气源岩评价指标研究现状及展望[J].天然气地球科学,2008,19(6):775-779. Mu Yapeng,Wang Wanchun,Song Zhenxiang.Present researches and prospects of the evaluation indicator of biogenic gas source rock[J].Natural Gas Geoscience,2008,19(6):775-779.
    [4]
    郭泽清,李本亮,曾富英,等.生物气分布特征和成藏条件[J].天然气地球科学,2006,17(3):407-413. Guo Zeqing,Li Benliang,Zeng Fuying,et al.Distribution characte-ristics and reservoir formation conditions of the biogenetic gas[J].Natural Gas Geoscience,2006,17(3):407-413.
    [5]
    Rebata-Landa V,Santamarina J C.Mechanical limits to microbial activity in deep sediments[J].Geochemistry,Geophysics,Geosystems,2006,7(11),doi: 10.1029/2006GC001355.
    [6]
    Phadnis H S,Santamarina J C.Bacteria in sediments:Pore size effects[J].Géotechnique Letters,2011,1(4):91-93.
    [7]
    Fredrickson J K,McKinley J P,Bjornstad B N,et al.Pore-size constraints on the activity and survival of subsurface bacteria in a Late Cretaceous shale-sandstone sequence,northwestern New Mexico[J].Geomicrobiology Journal,1997,14(3):183-202.
    [8]
    Chen Zhuoheng,Shuai Yanhua,Wang Norman.A reassessment of gas resources in selected Upper Cretaceous biogenic gas accumulations in southeastern Alberta and southwestern Saskatchewan,Canada[J].Bulletin of Canadian Petroleum Geology,2015,63(1):5-19.
    [9]
    Bloch J D,Schröder-Adams C J,Leckie D A,et al.Sedimentology,micropaleontology,geochemistry,and hydrocarbon potential of shale from the Cretaceous Lower Colorado Group in western Canada[C]//Geological Survey of Canada Bulletin 531.Ottawa:Natural Resources Canada,1999:30-67.
    [10]
    Chen Yanyan,Mastalerz M,Schimmelmann A.Heterogeneity of shale documented by micro-FTIR and image analysis[J].Journal of Microscopy,2014,256(3):177-189.
    [11]
    Bloch J,Schroeder-Adams C,Leckie D A,et al.Revised strati-graphy of the Lower Colorado Group (Albian to Turonian),Western Canada[J].Bulletin of Canadian Petroleum Geology,1993,41(3):325-348.
    [12]
    Chen Z,Shuai Y,Osadetz K,et al.Comparison of biogenic gas fields in the Western Canada SedimenTARy Basin and Qaidam Basin:Implications for essential geological controls on large microbial gas accumulations[J].Bulletin of Canadian Petroleum Geology,2015,63(1):33-52.
    [13]
    Shurr G W,Ridgley J L.Unconventional shallow biogenic gas systems[J].AAPG Bulletin,2002,86(11):1939-1969.
    [14]
    Nielsen K S,Schröder-Adams C J,Leckie D A.A new stratigraphic framework for the Upper Colorado Group (Cretaceous) in southern Alberta and southwestern Saskatchewan,Canada[J].Bulletin of Canadian Petroleum Geology,2003,51(3):304-346.
    [15]
    刘常洪,李德洋.煤低温氮吸附等温线的试验研究[J].煤矿安全,1992(7):19-21. Liu Changhong,Li Deyang.Experimental research of nitrogen adsorption isotherms of coal[J].Coalmine Safety,1992(7):19-21.
    [16]
    Groen J C,Peffer L A A,Pérez-Ramı'rez J.Pore size determination in modified micro-and mesoporous materials.Pitfalls and limitations in gas adsorption data analysis[J].Microporous and Mesoporous Materials,2003,60(1/3):1-17.
    [17]
    李旭.不同变质程度煤比表面积与吸附特征关系的研究[D].沈阳:煤炭科学研究总院沈阳研究院,2007:29-44. Li Xu.Research on relationship between specific surface area to adsorption feature of different rank coals[D].Shenyang:China Coal Research Institution Shenyang Branch,2007:29-44.
    [18]
    杨侃,陆现彩,徐金覃,等.气体吸附等温线法表征页岩孔隙结构的模型适用性初探[J].煤炭学报,2013,38(5):817-821. Yang Kan,Lu Xiancai,Xu Jinqin,et al.Preliminary verification of common calculation methods of pore size distribution of shale based on gas adsorption isotherm[J].Journal of China Coal Society,2013,38(5):817-821.
    [19]
    曾花森,霍秋立,张晓畅,等.应用岩石热解数据S2-TOC相关图进行烃源岩评价[J].地球化学,2010,39(6):574-579. Zeng Huasen,Huo Qiuli,Zhang Xiaochang,et al.Source rock evaluation using the S2-TOC plot from Rock-Eval pyrolysis[J].Geochimica,2010,39(6):574-579.
    [20]
    张振苓,邬立言,舒念祖.烃源岩热解分析参数Tmax异常的原因[J].石油勘探与开发,2006,33(1):72-75. Zhang Zhenling,Wu Liyan,Shu Nianzu.Cause analysis of abnormal Tmax values on Rock-Eval pyrolysis[J].Petroleum Exploration and Development,2006,33(1):72-75.
    [21]
    Tissot B P,Welte D H.Petroleum formation and occurrence:A new approach to oil and gas exploration[M].Berlin Heidelberg:Springer-Verlag,1978:128-131.
    [22]
    Boyd R J,Lewis D W.Sandstone diagenesis related to varying burial depth and temperature in Greymouth Coalfield,South Island,New Zealand[J].New Zealand Journal of Geology and Geophysics,1995,38(3):333-348.
    [23]
    Cranwell P A,Eglinton G,Robinson N.Lipids of aquatic orga-nisms as potential contributors to lacustrine sediments-Ⅱ[J].Organic Geochemistry,1987,11(6):513-527.
    [24]
    Goñi M A,Ruttenberg K C,Eglinton T I.Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico[J].Nature,1997,389(6648):275-278.
    [25]
    周友平,史继扬,屈定创.沉积有机质中ββ藿烷成因研究:碳稳定同位素证据[J].华南师范大学学报(自然科学版),1993(3):53-58. Zhou Youping,Shi Jiyang,Qu Dingchuang.Study on the origin of ββ Hopenes from different depositional environment:Stable carbon isotopic evidences[J].Journal of South China Normal University (Natural Science),1993(3):53-58.
    [26]
    周友平,史继扬,向明菊,等.沉积有机质中藿烯的成因研究:碳稳定同位素证据[J].沉积学报,1998,16(2):14-19. Zhou Youping,Shi Jiyang,Xiang Mingju,et al.Origin study of geohopenes from different depositional environments:Stable carbon isotopic evidences[J].Acta Sedimentologica Sinica,1998,16(2):14-19.
    [27]
    王屿涛.乌伦古坳陷未成熟原油的地球化学特征及成因探讨[J].地球化学,1994,23(2):179-188. Wang Yutao.Geochemical characteristics and origin of non-mature oil from Wulungu Depression[J].Geochimica,1994,23(2):179-188.
    [28]
    涂建琪,王淑芝,费轩冬.透射光—荧光下干酪根有机显微组分的划分[J].石油勘探与开发,1998,25(2):27-29. Xu Jianqi,Wang Shuzhi,Fei Xuandong.Classification of the macerals of kerogen in hydrocarbon source rocks by transmitted light fluorescence[J].Petroleum Exploration and Development,1998,25(2):27-29.
    [29]
    Bray E E,Evans E D.Distribution of n-paraffins as a clue to recognition of source beds[J].Geochimica et Cosmochimica Acta,1961,22(1):2-15.
    [30]
    柳广弟.石油地质学[M].4版.北京:石油工业出版社,2009. Liu Guangdi.Petroleum geology[M].4th ed.Beijing:Petroleum Industry Press,2009.
    [31]
    许书堂,张同周,常俊合,等.伊犁盆地烃源岩饱和烃特征及其古环境意义[J].断块油气田,1998,5(2):22-24. Xu Shutang,Zhang Tongzhou,Chang Junhe,et al.Saturation hydrocarbon characteristics in source rock and palaeoenvironment significance in Yili Basin[J].Fault-block Oil & Gas Field,1998,5(2):22-24.
    [32]
    姚鹏,尹红珍,姚庆祯,等.黄河口湿地土壤中正构烷烃分子指标及物源指示意义[J].环境科学,2012,33(10):3457-3465. Yao Peng,Yin Hongzhen,Yao Qingzhen,et al.Composition of n-alkanes in soils of the Yellow River estuary wetlands and their potential as organic matter source indicators[J].Environmental Science,2012,33(10):3457-3465.
    [33]
    Mclntyre C P,Harvey P M,Ferguson S H,et al.Determining the extent of biodegradation of fuels using the diastereomers of acyclic isoprenoids[J].Environmental Science & Technology,2007,41(7):2452-2458.
    [34]
    Ten Haven T L,Rullkötter J,De Leeuw J W,et al.Pristane/phytane ratio as environmental indicator[J].Nature,1988,333(6174):604.
    [35]
    Seifert W K,Moldowan J M.Use of biological markers in petro-leum exploration[J].Methods in Geochemistry and Geophysics,1986,24:261-290.
    [36]
    宋孚庆,任冬苓,张文龙,等.严重生物降解原油GC-MS特征及油源对比[J].分析测试学报,2004,23(S):304-305. Song Fuqing,Ren Dongling,Zhang Wenlong,et al.The GC-MS characteristics and oil-source correlation of severely biodegraded oil[J].Journal of Instrumental Analysis,2004,23(S):304-305.
    [37]
    包建平,朱翠山,马安来,等.生物降解原油中生物标志物组成的定量研究[J].江汉石油学院学报,2002,24(2):22-26. Bao Jianping,Zhu Cuishan,Ma Anlai,et al.Quantitative study of biomarker composition in biodegrated oils[J].Journal of Jianghan Petroleum Institute,2002,24(2):22-26.
    [38]
    Huang Haiping,Zhang Shuichang,Su Jin.Geochemistry of tri-and tetracyclic terpanes in the Palaeozoic oils from the TARim Basin,Northwest China[J].Energy & Fuels,2015,29(11):7014-7025.
    [39]
    Farrimond P,Griffiths T,Evdokiadis E.Hopanoic acids in Mesozoic sedimenTARy rocks:Their origin and relationship with hopanes[J].Organic Geochemistry,2002,33(8):965-977.
    [40]
    张立平,黄第藩,廖志勤.伽马蜡烷:水体分层的地球化学标志[J].沉积学报,1999,17(1):136-140. Zhang Liping,Huang Difan,Liao Zhiqin.Gammacerane:Geochemical indicator of water column stratification[J].Acta Sedimentologica Sinica,1999,17(1):136-140.
    [41]
    Mackenzie A S,Patience R L,Maxwell R J,et al.Molecular para-meters of maturation in the Toarcian shales,Paris Basin,France-Ⅰ. Changes in the configurations of acyclic isoprenoid alkanes,steranes and triterpanes[J].Geochimica et Cosmochi-mica Acta,1980,44(11):1709-1721.
    [42]
    包建平,朱翠山.生物降解作用对辽河盆地原油甾萜烷成熟度参数的影响[J].中国科学(D辑 地球科学),2008,38(S2):38-46. Bao Jianping,Zhu Cuishan.The effects of biodegradation on biomarker maturity indicators in sequentially biodegraded oils from Liaohe Basin,China[J].Science in China(Series D Earth Sciences),2009,52(S1):42-50.
    [43]
    Jørgensen B B,Isaksen M F,Jannasch H W.Bacterial sulfate reduction above 100 ℃ in deep-sea hydrothermal vent sediments[J].Science,1992,258(5089):1756-1757.
    [44]
    杨平,汪正红,谢渊,等.黔北下寒武统牛蹄塘组烃源岩的生物标志物特征和沉积环境[J].地质通报,2012,31(11):1910-1921. Yang Ping,Wang Zhenghong,Xie Yuan,et al.The biomarker characteristics and sedimenTARy environment of Early Cambrian Niutitang Formation source rock in northern Guizhou[J].Geological Bulletin of China,2012,31(11):1910-1921.
    [45]
    黄第籓,李晋超.关于松辽和华北中、新生代沉积相的某些问题[J].地质论评,1982,28(3):217-227. Huang Difan,Li Jinchao.Some questions about Mesozoic-Cenozoic sedimenTARy facies in the Songliao and North China basins[J].Geological Review,1982,28(3):217-227.
    [46]
    Radwan S S,Al-Mailem D,El-Nemr I,et al.Enhanced remediation of hydrocarbon contaminated desert soil fertilized with organic carbons[J].International Biodeterioration & Biodegradation,2000,46(2):129-132.
    [47]
    Fredrickson J K,Balkwill D L.Geomicrobial processes and biodiversity in the deep terrestrial subsurface[J].Geomicrobiology,2006,23(6):345-356.
    [48]
    Sharma P K,McInerney M J.Effect of grain size on bacterial penetration,reproduction,and metabolic activity in porous glass bead chambers[J].Applied and Environmental Microbiology,1994,60(5):1481-1486.
    [49]
    Mayer L M.Surface-area control of organic carbon accumulation in continental shelf sediments[J].Geochimica et Cosmochimica Acta,1994,58(4):1271-1284.
    [50]
    Shuai Yanhua,Zhang Shuichang,Grasby S E,et al.Controls on biogenic gas formation in the Qaidam Basin,northwestern China[J].Chemical Geology,2013,335:36-47.
    [51]
    Zhang Shuichang,Shuai Yanhua,Huang Ling,et al.Timing of biogenic gas formation in the eastern Qaidam Basin,NW China[J].Chemical Geology,2013,352:70-80.
    [52]
    Clarkson C R,Solano N,Bustin R M,et al.Pore structure characte-rization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J].Fuel,2013,103:606-616.
    [53]
    Zhang Shuichang,Huang Haiping,Su Jin,et al.Geochemistry of Paleozoic marine oils from the TARim Basin,NW China.Part 4:Paleobiodegradation and oil charge mixing[J].Organic Geochemistry,2014,67:41-57.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1078) PDF downloads(236) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return