Volume 43 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
QIAN Yixiong, CHU Chenglin, LI Yuejun, WANG Yi, ZHANG Zhongpei, YANG Xin, LI Wangpeng, MA Hongqiang, CHEN Yue, SHAO Zhibing, ZHUANG Xinbing. Characteristics and environment indication of mud shale undergone low temperature metamorphism: a case study of Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, Altyn Tagh fault[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(2): 193-207. doi: 10.11781/sysydz202102193
Citation: QIAN Yixiong, CHU Chenglin, LI Yuejun, WANG Yi, ZHANG Zhongpei, YANG Xin, LI Wangpeng, MA Hongqiang, CHEN Yue, SHAO Zhibing, ZHUANG Xinbing. Characteristics and environment indication of mud shale undergone low temperature metamorphism: a case study of Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, Altyn Tagh fault[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(2): 193-207. doi: 10.11781/sysydz202102193

Characteristics and environment indication of mud shale undergone low temperature metamorphism: a case study of Neoproterozoic Binggounan Formation, Hongliugou Ⅰ section, Altyn Tagh fault

doi: 10.11781/sysydz202102193
  • Received Date: 2020-06-28
  • Rev Recd Date: 2021-02-01
  • Publish Date: 2021-03-28
  • The Neoproterozoic Binggounan Formation mud shale in the Hongliugou Ⅰ section on the northwestern margin of the Altyn Tagh fault was deposited in a passive continental margin. They are shelf sediments about 60 m thick, interbedded with siliceous rocks, undergone a low temperature thermodynamic metamorphism, and had hydrocarbon generation potential. The tectonic background, provenance, weathering and sedimentary environment of the mud shale were discussed with regard to stratigraphic sections, mineralogy and geochemical analyses. The mud shale was mainly composed of silica-rich clay rock and mud-rich siliceous shale, followed by mud-silica mixed shale. They have simila-rities in Si, Mg, K, P, Sc, Y, Hf, Th Sc contents compared with the Post Archaean Australian shale (PAAS). The Ti, Mn, Fe, Ta contents and δEun, δCen, ΣREE values are higher, while the Al, Ca, Na, Nb and Zr contents are lower. The primitive sediment sources of the Binggounan mud shale were recycled sedimentary clasts, intermediate mafic and acid intrusive rocks, similar to a normal shale and arenites argillites and ensialic of continental upper crust in composition. The shale has undergone moderate chemical weathering in warm and humid conditions. The formation was divided into three sedimentary cycles from bottom to top, mainly anaerobic and anoxic, and occasionally oxidized. Hydrothermal alteration also occured in the lower section. The mud shale with a clay content of about 40% is rich in trace elements (REE) and organic matter, which was deposited in a suboxic to anoxic section on the shelf, showing a high productivity and hydrocarbon-generation potential.

     

  • loading
  • [1]
    BHATIA M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. doi: 10.1086/628815
    [2]
    BHATIA M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113. http://www.onacademic.com/detail/journal_1000033949482210_c714.html
    [3]
    BHATIA M R, CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
    [4]
    新疆维吾尔自治区地质矿产局. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 1993: 12-15.

    Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. Regional geology of Xinjiang Uygur autonomous region[M]. Beijing: Geological Publishing House, 1993: 12-15.
    [5]
    王国灿, 魏启荣, 贾春兴, 等. 关于东昆仑地区前寒武纪地质的几点认识[J]. 地质通报, 2007, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm

    WANG Guocan, WEI Qirong, JIA Chunxing, et al. Some ideas of Precambrian geology in the East Kunlun, China[J]. Geological Bulletin of China, 2007, 26(8): 929-937. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm
    [6]
    王国灿, 王青海, 简平, 等. 东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J]. 地学前缘, 2004, 11(4): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404019.htm

    WANG Guocan, WANG Qinghai, JIAN Ping, et al. Zircon SHRIMP ages of Precambrian metamorphic basement rocks and their tectonic significance in the eastern Kunlun Mountains, Qinghai Province, China[J]. Earth Science Frontiers, 2004, 11(4): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200404019.htm
    [7]
    王玉满, 王淑芳, 董大忠, 等. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 2016, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm

    WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1): 119-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601013.htm
    [8]
    TAYLOR S R, MCLENNAN S M. The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific, 1985: 57-277.
    [9]
    MCLENNAN S M, HEMMING S, MCDANIEL D K, et al. Geoche-mical approaches to sedimentation, provenance, and tectonics[J]. Geological Society of American Special Paper, 1993, 284: 21-40.
    [10]
    刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京: 科学出版社: 1984: 50-371.

    LIU Yingjun, CAO Liming, LI Zhaolin, et al. Element geoche-mistry[M]. Beijing: Science Press, 1984: 50-371.
    [11]
    刘英俊, 曹励明. 元素地球化学导论[M]. 北京: 地质出版社, 1987: 34-56.

    LIU Yingjun, CAO Liming. Element geochemical introduction[M]. Beijing: Geological Publishing House, 1987: 34-56.
    [12]
    ROSER B P, KORSCH R J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio[J]. The Journal of Geology, 1986, 94(5): 635-650. doi: 10.1086/629071
    [13]
    YU Bingsong, DONG Hailiang, WIDOM E, et al. Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin, Northwest China: implications for depositional setting and tectonic history[J]. Journal of Asian Earth Sciences, 2009, 34(3): 418-436. doi: 10.1016/j.jseaes.2008.07.003
    [14]
    SAVOY L E, STEVENSON R K, MOUNTJOY E W. Provenance of Upper Devonian-Lower Carboniferous miogeoclinal strata, southeastern Canadian Cordillera: link between tectonics and sedimentation[J]. Journal of Sedimentary Research, 2000, 70(1): 181-193. doi: 10.1306/2DC40909-0E47-11D7-8643000102C1865D
    [15]
    MOLNAR P, LYON-CAENT H. Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins[J]. Geophysical Journal International, 1989, 99(1): 123-153. doi: 10.1111/j.1365-246X.1989.tb02020.x
    [16]
    COWGILL E. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh fault, NW China[J]. Earth and Planetary Science Letters, 2007, 254(3/4): 239-255.
    [17]
    MEYER B, TAPPONNIER P, BOURJOT L, et al. Crustal thicken-ing in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x
    [18]
    DELVILLE N, ARNAUD N, MONTEL J M, et al. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, eastern Qilian Shan, northeastern Tibet, China[M]//HENDRIX M S, DAVIS G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: from continental assembly to intracontinental Deformation. [S. l. ]: Geological Society of America, 2001: 269-292.
    [19]
    SCHRÖDER S, GROTZINGER J P. Evidence for anoxia at the Ediacaran-Cambrian boundary: the record of redox-sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society, 2007, 164(1): 175-187. doi: 10.1144/0016-76492005-022
    [20]
    BAU M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of Europium[J]. Chemical Geology, 1991, 93(3/4): 219-230.
    [21]
    BAU M, DULSKI P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55.
    [22]
    MIR A R. Rare earth element geochemistry of post- to Neo-Archean shales from Singhbhum mobile belt, Eastern India: implications for tectonic setting and paleo-oxidation conditions[J]. Chinese Journal of Geochemistry, 2015, 34(3): 401-409.
    [23]
    COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
    [24]
    TOTTEN M W, HANAN M A, WEAVER B L. Beyond whole-rock geochemistry of shales: the importance of assessing mineralogic controls for revealing tectonic discriminants of multiple sediment sources for the Ouachita Mountain flysch deposits[J]. GSA Bulletin, 2000, 112(7): 1012-1022.
    [25]
    迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 1-60.

    CHI Qinghua, YAN Mingcai. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 1-60.
    [26]
    褚有龙. 中国重晶石矿床的成因类型[J]. 矿床地质, 1989, 8(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198904012.htm

    CHU Youlong. Genetic types of barlte deposlts in China[J]. Mineral Deposit, 1989, 8(4): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198904012.htm
    [27]
    彭军, 徐望国. 湘西上震旦统层状硅质岩沉积环境的地球化学标志[J]. 地球化学, 2001, 30(3): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103012.htm

    PENG Jun, XU Wangguo. Geochemical characteristics of depositional environment of the Upper Sinian bedded siliceous rocks in western Hunan[J]. GEOCHIMICA, 2001, 30(3): 293-298. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103012.htm
    [28]
    NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [29]
    FEDO C M, NESBITT H W, YOUNG G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [30]
    TANG Yan, SANG Longkang, YUAN Yanming, et al. Geochemistry of Late Triassic pelitic rocks in the NE part of Songpan-Ganzi Basin, western China: implications for source weathering, provenance and tectonic setting[J]. Geoscience Frontiers, 2012, 3(5): 647-660.
    [31]
    冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htm

    FENG Lianjun, CHU Xuelei, ZHANG Qirui, et al. CIA (Chemical Index of Alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200304027.htm
    [32]
    孙小勇, 牟传龙, 葛祥英, 等. 四川广元—陕西镇巴地区上奥陶统五峰组地球化学特征及沉积环境意义[J]. 沉积与特提斯地质, 2016, 36(1): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201601006.htm

    SUN Xiaoyong, MOU Chuanlong, GE Xiangying, et al. Geochemistry and sedimentary environments of the Upper Ordovician Wufeng Formation in Guangyuan, northern Sichuan and Zhenba, southern Shaanxi[J]. Sedimentary Geology and Tethyan Geology, 2016, 36(1): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201601006.htm
    [33]
    陶国亮, 申宝剑, 腾格尔, 等. 风化作用对高演化黑色岩系有机质影响因素分析: 以塔里木盆地柯坪地区玉尔吐斯组为例[J]. 石油实验地质, 2016, 38(3): 375-381. doi: 10.11781/sysydz201603375

    TAO Guoliang, SHEN Baojian, TENGER B, et al. Weathering effects on high-maturity organic matter in a black rock series: a case study of the Yuertusi Formation in Kalpin area, Tarim Basin[J]. Petroleum Geology and Experiment, 2016, 38(3): 375-381. doi: 10.11781/sysydz201603375
    [34]
    BERNER R A, RAISWELL R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855-862.
    [35]
    FRANCOIS R, HONJO S, MANGANINI S J, et al. Biogenic barium fluxes to the deep sea: implications for paleoproductivity reconstruction[J]. Global Biogeochemical Cycles, 1995, 9(2): 289-303.
    [36]
    昝博文, 刘树根, 冉波, 等. 扬子板块北缘下志留统龙马溪组重晶石结核特征及其成因机制分析[J]. 岩石矿物学杂志, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm

    ZAN Bowen, LIU Shugen, RAN Bo, et al. An analysis of barite concretions from Lower Silurian Longmaxi Formation on the northern margin of the Yangtze block and their genetic mechanism[J]. Acta Petrologica et Mineralogica, 2017, 36(2): 213-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201702007.htm
    [37]
    HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis limestone, Wabaunsee county, Kansas, U.S. A[J]. Chemical Geology, 1992, 99(1/3): 65-82.
    [38]
    JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111-129.
    [39]
    TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325: 46-58.
    [40]
    Dumoulin J A, Slack J F, Whalen M T, et al. Depositional setting and geochemistry of phosphorites and metalliferous black shales in the Carboniferous-Permian lisburne group, northern Alaska[J]. USGS professional paper, 2011(1776): 1-30.
    [41]
    LEWAN M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984, 48(11): 2231-2238.
    [42]
    伊海生, 彭军, 夏文杰. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报, 1995, 13(4): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.014.htm

    YI Haisheng, PENG Jun, XIA Wenjie. The Late Precambrian paleo-ocean evolution of the southeast Yangtze continental margin: REE record[J]. Acta Sedimentologica Sinica, 1995, 13(4): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB504.014.htm
    [43]
    PATTAN J N, PEARCE N J G, MISLANKAR P G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: a case study from the central Indian Ocean Basin[J]. Chemical Geology, 2005, 221(3/4): 260-278.
    [44]
    ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [45]
    YEASMIN R, CHEN Daizhao, FU Yong, et al. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China[J]. Journal of Asian Earth Sciences, 2017, 134: 365-386.
    [46]
    吴朝东, 储著银. 黑色页岩微量元素形态分析及地质意义[J]. 矿物岩石地球化学通报, 2001, 20(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101004.htm

    WU Chaodong, CHU Zhuyin. Sequential extraction of trace elements and the geological significance of fractions in black shales, west Hunan and east Guizhou[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200101004.htm
    [47]
    SHIELDS G, STILLE P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (360) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return