Volume 43 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LI Xincheng, HOU Yuguang, CHEN Zhenhong, HE Sheng, LIANG Yaqi, LIU Yukun, SONG Yingrui, YU Rui. Influence of Permian basaltic volcanic activity on coal-bearing shale reservoirs, Southern Guizhou Depression[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 620-627. doi: 10.11781/sysydz202104620
Citation: LI Xincheng, HOU Yuguang, CHEN Zhenhong, HE Sheng, LIANG Yaqi, LIU Yukun, SONG Yingrui, YU Rui. Influence of Permian basaltic volcanic activity on coal-bearing shale reservoirs, Southern Guizhou Depression[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(4): 620-627. doi: 10.11781/sysydz202104620

Influence of Permian basaltic volcanic activity on coal-bearing shale reservoirs, Southern Guizhou Depression

doi: 10.11781/sysydz202104620
  • Received Date: 2020-04-12
  • Rev Recd Date: 2021-05-14
  • Publish Date: 2021-07-28
  • To investigate the influences of volcanic activities on shale reservoirs, a case study was carried out on the Permian Mount Emei basalt and coal-bearing shale of Longtan Formation in the Southern Guizhou Depression. Based on the analytical results of total organic carbon content, XRD, vitrinite reflectance and cryogenic nitrogen and carbon dioxide adsorptions, the effects of volcanic activities on the hydrocarbon generation, mineral composition and reservoir microstructure of coal-bearing shale were discussed. The results showed that volcanic activities had obvious effects on the hydrocarbon generation, mineral composition and pore structure of coal-bearing shale. They significantly promoted the evolution and maturation of organic matters in shale, which quickly entered the over-mature stage (Ro% increased from 2.0% to 2.88%), and accelerated the hydrocarbon generation and expulsion efficiency. With the decrease of the distance to the basalt, the contents of clastic minerals and carbonate minerals increased, the content of clay minerals decreased, and the contents of illite and chlorite changed regularly, which indicated that the evolution of shale diagenesis had also been affected to a certain extent. The heat brought by volcanic activities had an important influence on the pores of reservoirs. As it got closer to basalt, the proportion of micropores increased while the content of mesopores and macropores decreased. It was speculated that the thermal effects of volcanic activities promoted the formation of organic pores and also affected the development of inorganic pores.

     

  • loading
  • [1]
    CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Deve-lopment of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31. doi: 10.1016/j.coal.2012.08.004
    [2]
    CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4): 665-677. doi: 10.1306/08151110188
    [3]
    张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm

    ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
    [4]
    张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806048.htm

    ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200806048.htm
    [5]
    SLATT R M, O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030. doi: 10.1306/03301110145
    [6]
    LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861. doi: 10.2110/jsr.2009.092
    [7]
    田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm

    TIAN Hua, ZHANG Shuichang, LIU Shaobo, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203011.htm
    [8]
    MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643. doi: 10.1306/04011312194
    [9]
    MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. doi: 10.1306/07231212048
    [10]
    吉利明, 吴远东, 贺聪, 等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016, 37(2): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602003.htm

    JI Liming, WU Yuandong, HE Cong, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J]. Acta Petrolei Sinica, 2016, 37(2): 172-181. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602003.htm
    [11]
    马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm

    MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
    [12]
    王民, 卢双舫, 薛海涛, 等. 岩浆侵入体对有机质生烃(成熟)作用的影响及数值模拟[J]. 岩石学报, 2010, 26(1): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001022.htm

    WANG Min, LU Shuangfang, XUE Haitao, et al. The effects of magmatic intrusions on the maturation of organic matter and its numerical simualtion[J]. Acta Petrologica Sinica, 2010, 26(1): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001022.htm
    [13]
    CHEN Ji, XIAO Xianming. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
    [14]
    徐政语, 姚根顺, 郭庆新, 等. 黔南坳陷构造变形特征及其成因解析[J]. 大地构造与成矿学, 2010, 34(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201001001.htm

    XU Zhengyu, YAO Genshun, GUO Qingxin, et al. Genetic interpretation about geotectonics and structural transfiguration of the Southern Guizhou Depression[J]. Geotectonica et Metallogenia, 2010, 34(1): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201001001.htm
    [15]
    张江江. 黔南坳陷构造演化研究[D]. 青岛: 中国石油大学, 2010.

    ZHANG Jiangjiang. The research of tectonic evolution in Southern Guizhou Depression[D]. Qingdao: China University of Petroleum, 2010.
    [16]
    王民, 王岩, 卢双舫, 等. 岩浆侵入体热作用对烃源岩生烃影响的定量表征: 以松辽盆地南部英台断陷为例[J]. 断块油气田, 2014, 21(2): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402009.htm

    WANG Min, WANG Yan, LU Shuangfang, et al. Thermal influence of magma intrusion on hydrocarbon generation of source rock: taking south Yingtai Fault Depression of Songliao Basin as an example[J]. Fault-Block Oil and Gas Field, 2014, 21(2): 171-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402009.htm
    [17]
    聂爱国, 秦德先, 管代云, 等. 峨眉山玄武岩浆喷发对贵州西部区域成矿贡献研究[J]. 地质与勘探, 2007, 43(2): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702010.htm

    NIE Aiguo, QIN Dexian, GUAN Daiyun, et al. A research on regional metallogenic contribution to gushing Emeishan basalt magma in western of Guizhou province[J]. Geology and Prospecting, 2007, 43(2): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702010.htm
    [18]
    何斌, 徐义刚, 肖龙, 等. 峨眉山大火成岩省的形成机制及空间展布: 来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2): 194-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302012.htm

    HE Bin, XU Yigang, XIAO Long, et al. Generation and spatial distribution of the Emeishan large igneous province: new evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003, 77(2): 194-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302012.htm
    [19]
    徐义刚, 何斌, 罗震宇, 等. 我国大火成岩省和地幔柱研究进展与展望[J]. 矿物岩石地球化学通报, 2013, 32(1): 25-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htm

    XU Yigang, HE Bin, LUO Zhenyu, et al. Study on mantle plume and large igneous provinces in China: an overview and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(1): 25-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201301003.htm
    [20]
    陈荣书, 何生, 王青玲, 等. 岩浆活动对有机质成熟作用的影响初探: 以冀中葛渔城—文安地区为例[J]. 石油勘探与开发, 1989, 16(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198901005.htm

    CHEN Rongshu, HE Sheng, WANG Qingling, et al. A preliminary discussion of magma activity on the maturation of organic matter: taking Geyucheng-Wenan area of Hebei province as an example[J]. Petroleum Exploration and Development, 1989, 16(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198901005.htm
    [21]
    何生, 陈荣书, 兰廷泽. 冀中文安斜坡石炭—二叠纪煤系特征及岩浆热力成烃作用[J]. 地球科学(中国地质大学学报), 1992, 17(6): 699-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199206008.htm

    HE Sheng, CHEN Rongshu, LAN Tingze. Coal formation characteristics of Carboniferous-Permian and magmatic thermal power hydrocarbon-generating in Wenan slope, Jizhong Depression[J]. Earth Science(Journal of China University of Geosciences), 1992, 17(6): 699-708. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199206008.htm
    [22]
    万从礼, 金强. 东营凹陷纯西辉长岩对烃源岩异常生排烃作用研究[J]. 长安大学学报(地球科学版), 2003, 25(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200301005.htm

    WAN Congli, JIN Qiang. Study on exceptional hydrocarbons generating and eliminating of Gabbros to source rocks in Chunxi area of Dongying Depression[J]. Journal of Chang'an University (Earth Science Edition), 2003, 25(1): 20-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX200301005.htm
    [23]
    宋颖睿, 侯宇光, 刘宇坤, 等. 黔南坳陷下石炭统摆佐组暗色页岩热演化与生烃史研究[J]. 石油实验地质, 2018, 40(2): 226-232. doi: 10.11781/sysydz201802226

    SONG Yingrui, HOU Yuguang, LIU Yukun, et al. Thermal evolution and hydrocarbon generation histories of black shale in Lower Carboniferous Baizuo Formation, Southern Guizhou Depression[J]. Petroleum Geology & Experiment, 2018, 40(2): 226-232. doi: 10.11781/sysydz201802226
    [24]
    何治亮, 聂海宽, 张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘, 2016, 23(2): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm

    HE Zhiliang, NIE Haikuan, ZHANG Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602004.htm
    [25]
    翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm

    ZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in southern China[J]. Earth Science, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm
    [26]
    侯读杰, 冯子辉. 油气地球化学[M]. 北京: 石油工业出版社, 2011.

    HOU Dujie, FENG Zihui. Petroleum geochemistry[M]. Beijing: Petroleum Industry Press, 2011.
    [27]
    李霞. 花岗岩侵入对页岩成分和孔隙结构的影响[D]. 南京: 南京大学, 2016.

    LI Xia. Influence of granite intrusion on the mineralogy and pore structure of shales[D]. Nanjing: Nanjing University, 2016.
    [28]
    邓恩德, 颜智华, 姜秉仁, 等. 黔西地区上二叠统龙潭组海陆交互相页岩气储层特征[J]. 石油实验地质, 2020, 42(3): 467-476. doi: 10.11781/sysydz202003467

    DENG Ende, YAN Zhihua, JIANG Bingren, et al. Reservoir characteristics of marine-continental shale gas in Upper Permian Longtan Formation, western Guizhou province[J]. Petroleum Geology & Experiment, 2020, 42(3): 467-476. doi: 10.11781/sysydz202003467
    [29]
    LI Yingli, CAI Jingong, WANG Xuejun, et al. Smectite-illitization difference of source rocks developed in saline and fresh water environments and its influence on hydrocarbon generation: a study from the Shahejie Formation, Dongying Depression, China[J]. Marine and Petroleum Geology, 2017, 80: 349-357.
    [30]
    程璇, 徐尚, 郝芳, 等. 松辽盆地嫩江组富有机质页岩有机孔隙成因[J]. 地质科技情报, 2019, 38(4): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904008.htm

    CHENG Xuan, XU Shang, HAO Fang, et al. Origin of organic pores in the organic-rich shale of Nenjiang Formation, Songliao Basin, China[J]. Geological Science and Technology Information, 2019, 38(4): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904008.htm
    [31]
    朱筱敏, 王英国, 钟大康, 等. 济阳坳陷古近系储层孔隙类型与次生孔隙成因[J]. 地质学报, 2007, 81(2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702008.htm

    ZHU Xiaomin, WANG Yingguo, ZHONG Dakang, et al. Pore types and secondary pore evolution of Paleogene reservoir in the Jiyang Sag[J]. Acta Geologica Sinica, 2007, 81(2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200702008.htm
    [32]
    ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (324) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return