Volume 43 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
FANG Chenchen, ZHAI Jia, HU Guoyi, GONG Deyu. A simultaneous determination method for diamondoids and thiadiamondoids in condensate oil and its geological significance: taking condensate oil from central Tarim Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 906-914. doi: 10.11781/sysydz202105906
Citation: FANG Chenchen, ZHAI Jia, HU Guoyi, GONG Deyu. A simultaneous determination method for diamondoids and thiadiamondoids in condensate oil and its geological significance: taking condensate oil from central Tarim Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(5): 906-914. doi: 10.11781/sysydz202105906

A simultaneous determination method for diamondoids and thiadiamondoids in condensate oil and its geological significance: taking condensate oil from central Tarim Basin as an example

doi: 10.11781/sysydz202105906
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-08-31
  • Publish Date: 2021-09-28
  • Diamondoids and thiadiamondoids in crude oil samples have the similar diamond-like cage structures, which can reflect the thermal cracking and thermochemical sulfate reduction(TSR) effect during geological processes. Therefore, the simultaneous monitoring of diamondoids and thiadiamondoids cannot only improve the efficiency of sample analysis and the accuracy of quantitative results of thiadiamondoids, but also provide more reliable and extensive geochemical interpretation for the samples. In this paper, a simultaneous quantitative detection method of diamondoids and thiadiamondoids was proposed by the means of gas chromatography-triple quadrupole mass spectrometer (GC-MS-MS). By determining the parameters of precursor and product ions, scanning time and collision energy of the target compound, a simultaneous quantitative detection method was established for diamondoids and thiadiamondoids in condensate from the central Tarim Basin. Results showed that despite the contents of diamondoids of oils from the central Tarim Basin were different, the maturity degree on the other hand, were comparable as over mature, and some samples have experienced TSR.

     

  • loading
  • [1]
    LANDA S, MACHACEK V. Adamantane, a new hydrocarbon extracted from petroleum. Collection czechoslov[J]. Chemical Communications, 1933, 5: 1-5.
    [2]
    付宁, 于晓果, 赵盛蓉. 天然气中金刚烷类化合物的检出及其应用[J]. 石油实验地质, 1998, 20(3): 65-69. doi: 10.11781/sysydz199803267

    FU Ning, YU Xiaoguo, ZHAO Shengrong. Analysis of diamondoid hydrocarbons in natural gas and its application to Ying Qiong Basin[J]. Experimental Petroleum Geology, 1998, 20(3): 65-69. doi: 10.11781/sysydz199803267
    [3]
    LIN Rui, WILK Z A. Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir[J]. Fuel, 1995, 74(10): 1512-1521. doi: 10.1016/0016-2361(95)00116-M
    [4]
    STOUT S A, DOUGLAS G S. Diamondoid hydrocarbons-application in the chemical fingerprinting of natural gas condensate and gasoline[J]. Environmental Forensics, 2004, 5(4): 225-235. doi: 10.1080/15275920490886734
    [5]
    SASSEN R, POST P. Enrichment of diamondoids and 13C in condensate from Hudson Canyon, US Atlantic[J]. Organic Geochemistry, 2008, 39(1): 147-151. doi: 10.1016/j.orggeochem.2007.10.004
    [6]
    BENDER A O, SAID E Z, ABDULSADA A K. Gas chromatographic identification of adamantanes in some Iraqi crude oils[J]. Analyst, 1986, 111(5): 575-576. doi: 10.1039/an9861100575
    [7]
    WINGERT W S. G. C. -M. S. analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43. doi: 10.1016/0016-2361(92)90190-Y
    [8]
    CHEN Junhong, FU Jiamo, SHENG Guoying, et al. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
    [9]
    GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000, 31(1): 67-73. doi: 10.1016/S0146-6380(99)00137-0
    [10]
    DAHL J E, LIU S G, RMK C. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules[J]. Science, 2003, 299(5603): 96-99. doi: 10.1126/science.1078239
    [11]
    AZEVEDO D A, TAMANQUEIRA J B, DIAS J, et al. Multivariate statistical analysis of diamondoid and biomarker data from Brazilian Basin oil samples[J]. Fuel, 2008, 87(10/11): 2122-2130.
    [12]
    IMUTA K, OUCHI K. Isolation of adamantane from coal extract[J]. Fuel, 1973, 52(4): 301-302. doi: 10.1016/0016-2361(73)90062-8
    [13]
    ACZEL T, GORBATY M L, MAA P S, et al. Stability of adamantane and its derivatives to coal-liquefaction conditions, and its implications toward the organic structure of coal[J]. Fuel, 1979, 58(3): 228-230. doi: 10.1016/0016-2361(79)90123-6
    [14]
    SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001, 32(3): 365-375. doi: 10.1016/S0146-6380(01)00003-1
    [15]
    WEI Zhibin, MOLDOWAN J, JARVIE D, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006, 34(12): 1013-1016. doi: 10.1130/G22840A.1
    [16]
    DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57. doi: 10.1038/19953
    [17]
    ZHANG Shuichang, HUANG Haiping, XIAO Zhongyao, et al. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China. Part 2: maturity assessment[J]. Organic Geochemistry, 2005, 36(8): 1215-1225. doi: 10.1016/j.orggeochem.2005.01.014
    [18]
    WEI Zhibin, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007, 38(11): 1910-1926. doi: 10.1016/j.orggeochem.2007.07.009
    [19]
    WEI Zhibin, MANKIEWICZ P, WALTERS C, et al. Natural occurrence of higher thiadiamondoids and diamondoidthiols in a deep petroleum reservoir in the Mobile Bay gas field[J]. Organic Geochemistry, 2012, 42(2): 121-133.
    [20]
    WANG Zhendi, YANG Chun, HOLLEBONE B, et al. Forensic fingerprinting of diamondoids for correlation and differentiation of spilled oil and petroleum products[J]. Environmental Science & Technology, 2006, 40(18): 5636-5646.
    [21]
    CAI Chunfang, XIAO Qinlin, FANG Chenchen, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 101: 49-62. doi: 10.1016/j.orggeochem.2016.08.006
    [22]
    ZHU Guangyou, ZHANG Ying, WANG Meng, et al. Discovery of high-abundance diamondoids and thiadiamondoids and severe TSR alteration of well ZS1C condensate, Tarim Basin, China[J]. Energy & Fuels, 2018, 32(7): 7383-7392.
    [23]
    WEI Zhibin, MOLDOWAN J M, FAGO F, et al. Origins of thiadiamondoids and diamondoidthiols in petroleum[J]. Energy & Fuels, 2007, 21(6): 3431-3436.
    [24]
    HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002(16): 1750-1751. doi: 10.1039/b203551k
    [25]
    BIRCH S, CULLUM T V, DEAN R A, et al. Thiaadamantane[J]. Nature, 1952, 170(4328): 629-630.
    [26]
    WANG Meng, ZHU Guangyou, REN Limin, et al. Separation and characterization of sulfur compounds in ultra-deep formation crude oils from Tarim Basin[J]. Energy & Fuels, 2015, 29(8): 4842-4849.
    [27]
    ZHU Guangyou, WANG Huitong, WENG Na. TSR-altered oil with high-abundance thiaadamantanes of a deep-buried Cambrian gas condensate reservoir in Tarim Basin[J]. Marine and Petroleum Geology, 2016, 69: 1-12. doi: 10.1016/j.marpetgeo.2015.10.007
    [28]
    晏继发, 马安来, 李杰豪, 等. 原油金刚烷类化合物2种常用检测方法的对比[J]. 天然气地球科学, 2020, 31(3): 436-445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003014.htm

    YAN Jifa, MA Anlai, LI Jiehao, et al. Comparison of two determination methods for diamondoids in crude oil[J]. Natural Gas Geoscience, 2020, 31(3): 436-445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003014.htm
    [29]
    王汇彤, 翁娜, 张水昌, 等. 石油样品中金刚烷类化合物的定量分析新方法[J]. 石油实验地质, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443

    WANG Huitong, WENG Na, ZHANG Shuichang, et al. A novel method for quantitative analysis of diamondoids in petroleum samples[J]. Petroleum Geology & Experiment, 2019, 41(3): 443-450. doi: 10.11781/sysydz201903443
    [30]
    LIANG Qianyong, XIONG Yongqiang, FANG Chenchen, et al. Quantitative analysis of diamondoids in crude oils using gas chromatography-triple quadrupole mass spectrometry[J]. Organic Geochemistry, 2012, 43: 83-91. doi: 10.1016/j.orggeochem.2011.10.008
    [31]
    MEI M, BISSADA K K, MALLOY T B, et al. Improved method for simultaneous determination of saturated and aromatic biomar-kers, organosulfur compounds and diamondoids in crude oils by GC-MS/MS[J]. Organic Geochemistry, 2018, 116: 35-50. doi: 10.1016/j.orggeochem.2017.09.010
    [32]
    马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801004.htm

    MA Anlai, JIN Zhijun, ZHU Cuishan. Detection and research significance of thiadiamondoids from crude oil in well Shunnan 1, Tarim Basin[J]. Acta Petrolei Sinica, 2018, 39(1): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801004.htm
    [33]
    姜乃煌, 朱光有, 张水昌, 等. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J]. 科学通报, 2007, 52(24): 2871-2875. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200724010.htm

    JIANG Naihuang, ZHU Guangyou, ZHANG Shuichang, et al. Detection of 2-thiaadamantanes in the oil from well TZ-83 in Tarim Basin and its geological implication[J]. Chinese Science Bulletin, 2008, 53(3): 396-401. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200724010.htm
    [34]
    HERNÁNDEZ F, PORTOLÉS T, PITARCH E, et al. Potential of gas chromatography coupled to triple quadrupole mass spectrometry for quantification and confirmation of organohalogen xenoestrogen compounds in human breast tissues[J]. Analytical Chemistry, 2005, 77(23): 7662-7672. doi: 10.1021/ac050874+
    [35]
    QU Linjuan, HUI Zui, ZHU Jianhua, et al. Rapid determination of organophosphorous pesticides in leeks by gas chromatography-triple quadrupole mass spectrometry[J]. Food Chemistry, 2010, 122(1): 327-332.
    [36]
    WEI Zhibin, MOLDOWAN J M, ZHANG Shuichang, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007, 38(2): 227-249.
    [37]
    FANG Chenchen, XIONG Yongqiang, LIANG Qianyong, et al. Variation in abundance and distribution of diamondoids during oil cracking[J]. Organic Geochemistry, 2012, 47: 1-8.
    [38]
    房忱琛, 吴伟, 刘丹, 等. 煤系中金刚烷类化合物演化特征及应用[J]. 天然气地球科学, 2015, 26(1): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501014.htm

    FANG Chenchen, WU Wei, LIU Dan, et al. Evolution characte-ristics and application of diamondoids in coal measures[J]. Natural Gas Geoscience, 2015, 26(1): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201501014.htm
    [39]
    FANG Chenchen, XIONG Yongqiang, LI Yun, et al. Generation and evolution of diamondoids in source rock[J]. Marine and Petroleum Geology, 2015, 67: 197-203.
    [40]
    WALTERS C C, WANG F C, QIAN Kuangnan, et al. Petroleum alteration by thermochemical sulfate reduction: a comprehensive molecular study of aromatic hydrocarbons and polar compounds[J]. Geochimica et Cosmochimica Acta, 2015, 153: 37-71.
    [41]
    GVIRTZMAN Z, SAID-AHMAD W, ELLIS G S, et al. Compound-specific sulfur isotope analysis of thiadiamondoids of oils from the Smackover Formation, USA[J]. Geochimica et Cosmochimica Acta, 2015, 167: 144-161.
    [42]
    CAI Chunfang, AMRANI A, WORDEN R H, et al. Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Geochimica et Cosmochimica Acta, 2016, 182: 88-108.
    [43]
    马安来, 金之钧, 朱翠山, 等. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J]. 中国科学(地球科学), 2018, 48(10): 1312-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810004.htm

    MA Anlai, JIN Zhijun, ZHU Cuishan, et al. Detection and significance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C well of the Tarim Basin, NW China[J]. Science China(Earth Sciences), 2018, 61(10): 1440-1450. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201810004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (423) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return