Volume 44 Issue 3
May  2022
Turn off MathJax
Article Contents
WANG Yang, ZHANG Shaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394
Citation: WANG Yang, ZHANG Shaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394

Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone

doi: 10.11781/sysydz202203394
  • Received Date: 2021-10-25
  • Rev Recd Date: 2022-04-20
  • Publish Date: 2022-05-28
  • Strike-slip faults were well-developed in the Tahe Oilfield, Tarim Basin, which had an important control to the accumulation and distribution of hydrocarbon. In this study, the TP 39 strike-slip fault in the Tahe Oilfield was taken as an example, fluid inclusions were used to determine the time of hydrocarbon charge based on the analysis of strike-slip fault activity history, and the relationship between hydrocarbon charging events and fault activity history was studied. Results show that the TP 39 strike-slip fault zone is rich in oil and gas resources and has the characteristics of multi-stage activities, namely the Middle-Late Caledonian to Early Hercynian, Indosinian and Yanshanian-Himalayan, respectively. The results of fluid inclusion analysis indicated that there were four episodes of oil charge to the Ordovician reservoir of TP 39 strike-slip fault, and oil inclusions with golden-yellowish, yellow, yellow-green and blue fluorescing colors were trapped. According to the minimum homogenization temperature of aqueous inclusions co-existed with oil-bearing inclusions, combined with the burial and thermal histories of reservoirs, there were four periods of oil filling events occurred at around 440, 324, 220 and 110 Ma, corresponding to Caledonian, Hercynian, Indosinian and Yanshanian, respectively, which showed a good response relationship with the fault activity time. It was then concluded that the activities of strike-slip fault constrained the time of hydrocarbon charge, thus controlled the whole process of hydrocarbon accumulation.

     

  • loading
  • [1]
    SYLVESTER A G. Strike-slip faults[J]. GSA Bulletin, 1988, 100(11): 1666-1703. doi: 10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2
    [2]
    CHOI J H, EDWARDS P, KO K, et al. Definition and classification of fault damage zones: a review and a new methodological approach[J]. Earth-Science Reviews, 2016, 152: 70-87. doi: 10.1016/j.earscirev.2015.11.006
    [3]
    COWIE P A, SCHOLZ C H. Growth of faults by accumulation of seismic slip[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B7): 11085-11095. doi: 10.1029/92JB00586
    [4]
    CAINE J S, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure[J]. Geology, 1996, 24(11): 1025-1028. doi: 10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
    [5]
    ANTONELLINI M, CILONA A, TONDI E, et al. Fluid flow numerical experiments of faulted porous carbonates, northwest Sicily (Italy)[J]. Marine and Petroleum Geology, 2014, 55: 186-201. doi: 10.1016/j.marpetgeo.2013.12.003
    [6]
    DE JOUSSINEAU G, AYDIN A. The evolution of the damage zone with fault growth in sandstone and its multiscale characte-ristics[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B12): B12401. doi: 10.1029/2006JB004711
    [7]
    GOGONENKOV U N, TIMURZIEV A I. strike-slip faulting in the west Siberian platform: insights from 3D seismic imagery[J]. Comptes Rendus Geoscience, 2012, 344(3/4): 214-226.
    [8]
    MITRA S, PAUL D. Structural geometry and evolution of releasing and restraining bends: insights from laser-scanned experimental models[J]. AAPG Bulletin, 2011, 95(7): 1147-1180. doi: 10.1306/09271010060
    [9]
    MCCLAY K, BONORA M. Analog models of restraining stepovers in strike-slip fault systems[J]. AAPG Bulletin, 2001, 85(2): 233-260.
    [10]
    FLODIN E A, AYDIN A. Evolution of a strike-slip fault network, valley of fire state park, southern Nevada[J]. GSA Bulletin, 2004, 116(1/2): 42-59.
    [11]
    NADIMI A, KONON A. strike-slip faulting in the central part of the Sanandaj-Sirjan zone, Zagros orogen, Iran[J]. Journal of Structural Geology, 2012, 40: 2-16. doi: 10.1016/j.jsg.2012.04.007
    [12]
    BELLOT J P. Hydrothermal fluids assisted crustal-scale strike-slip on the Argentat fault zone[J]. Tectonophysics, 2008, 450(1/4): 21-33.
    [13]
    赵野, 杨海风, 黄振, 等. 渤海海域庙西南洼陷走滑构造特征及其对油气成藏的控制作用[J]. 油气地质与采收率, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htm

    ZHAO Ye, YANG Haifeng, HUANG Zhen, et al. Strike-slip structural characteristics and its controlling effect on hydrocarbon accumulation in Miaoxinan Sag, Bohai Sea[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(4): 35-44. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202004005.htm
    [14]
    程燕君, 吴智平, 张杰. 济阳坳陷长堤地区走滑构造特征及对油气聚集的控制作用[J]. 油气地质与采收率, 2020, 27(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002006.htm

    CHENG Yanjun, WU Zhiping, ZHANG Jie. Characteristics of strike-slip faults and its control on hydrocarbon accumulation in Changdi area of Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202002006.htm
    [15]
    丁文龙, 林畅松, 漆立新, 等. 塔里木盆地巴楚隆起构造格架及形成演化[J]. 地学前缘, 2008, 15(2): 242-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802032.htm

    DING Wenlong, LIN Changsong, QI Lixin, et al. Structural framework and evolution of Bachu Uplift in Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 242-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802032.htm
    [16]
    汤良杰, 邱海峻, 云露, 等. 塔里木盆地多期改造-晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 2014, 44(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htm

    TANG Liangjie, QIU Haijun, YUN Lu, et al. Poly-phase reform late-stage finalization composite tectonics and strategic area selection of oil and gas resources in Tarim Basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htm
    [17]
    何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm

    HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm
    [18]
    张宗命, 贾承造. 塔里木克拉通盆地内古隆起及其找油气方向[J]. 西安石油学院院报, 1997, 12(3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY703.000.htm

    ZHANG Zongming, JIA Chengzao. Palaeohighs in craton basin of Talimu and the exploration objectives[J]. Journal of Xi'an Petroleum Institute, 1997, 12(3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY703.000.htm
    [19]
    周玉琦, 黎玉战, 侯鸿斌. 塔里木盆地塔河油田的勘探实践与认识[J]. 石油实验地质, 2001, 23(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200104000.htm

    ZHOU Yuqi, LI Yuzhan, HOU Hongbin. The exploration and development in Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2001, 23(4): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200104000.htm
    [20]
    康玉柱. 海相成油新理论与塔河大油田的发现[J]. 地质力学学报, 2002, 8(3): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200203001.htm

    KANG Yuzhu. New theory of marine oil formation and discover of Tahe Oilfield, northern Tarim Basin[J]. Journal of Geomechanics, 2002, 8(3): 201-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200203001.htm
    [21]
    陈红汉, 吴悠, 丰勇, 等. 塔河油田奥陶系油气成藏期次及年代学[J]. 石油与天然气地质, 2014, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm

    CHEN Honghan, WU You, FENG Yong, et al. Timing and chronology of hydrocarbon charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China[J]. Oil & Gas Geology, 2014, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
    [22]
    闫相宾, 张涛. 塔河油田碳酸盐岩大型隐蔽油藏成藏机理探讨[J]. 地质论评, 2004, 50(4): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404005.htm

    YAN Xiangbin, ZHANG Tao. Discussion on forming mechanism of the large-scale carbonate rock subtle reservoir in the Tahe Oilfield[J]. Geological Review, 2004, 50(4): 370-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404005.htm
    [23]
    云露, 蒋华山. 塔河油田成藏条件与富集规律[J]. 石油与天然气地质, 2007, 28(6): 768-775. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706011.htm

    YUN Lu, JIANG Huashan. Hydrocarbon accumulation conditions and enrichment rules in Tahe Oilfield[J]. Oil & Gas Geology, 2007, 28(6): 768-775. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200706011.htm
    [24]
    吴梅莲, 刘永福, 彭鹏, 等. 轮南古潜山走滑断裂特征及其对油气成藏的影响[J]. 断块油气田, 2021, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htm

    WU Meilian, LIU Yongfu, PENG Peng, et al. Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J]. Fault-Block Oil and Gas Field, 2021, 28(4): 456-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202104006.htm
    [25]
    韩俊, 况安鹏, 能源, 等. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm

    HAN Jun, KUANG Anpeng, NENG Yuan, et al. Vertical layered structure of Shunbei No. 5 strike-slip fault zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2021, 42(2): 152-160. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102004.htm
    [26]
    何光玉, 顾忆, 赵永强, 等. 塔里木盆地北缘沙雅隆起两阶段走滑变形的证据[J]. 石油实验地质, 2020, 42(2): 172-176. doi: 10.11781/sysydz202002172

    HE Guangyu, GU Yi, ZHAO Yongqiang, et al. Evidence of two-stage strike-slip structural deformation of Shaya Uplift, northern Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2): 172-176. doi: 10.11781/sysydz202002172
    [27]
    赵永强, 云露, 王斌, 等. 塔里木盆地塔河油田中西部奥陶系油气成藏主控因素与动态成藏过程[J]. 石油实验地质, 2021, 43(5): 758-766. doi: 10.11781/sysydz202105758

    ZHAO Yongqiang, YUN Lu, WANG Bin, et al. Main constrains and dynamic process of Ordovician hydrocarbon accumulation, central and western Tahe Oil Field, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(5): 758-766. doi: 10.11781/sysydz202105758
    [28]
    漆立新, 云露. 塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J]. 石油与天然气地质, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm

    QI Lixin, YUN Lu. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe Oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001005.htm
    [29]
    吕海涛, 丁勇, 耿锋. 塔里木盆地奥陶系油气成藏规律与勘探方向[J]. 石油与天然气地质, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm

    LÜ Haitao, DING Yong, GENG Feng. Hydrocarbon accumulation patterns and favorable exploration areas of the Ordovician in Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 798-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406009.htm
    [30]
    顾忆, 黄继文, 贾存善, 等. 塔里木盆地海相油气成藏研究进展[J]. 石油实验地质, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001

    GU Yi, HUANG Jiwen, JIA Cunshan. Research progress on marine oil and gas accumulation in Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 1-12. doi: 10.11781/sysydz202001001
    [31]
    邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
    [32]
    GOLDSTEIN R H. Fluid inclusions in sedimentary and diagenetic systems[J]. Lithos, 2001, 55(1/4): 159-193.
    [33]
    BOURDET J, PIRONON J, LEVRESSE G, et al. Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions[J]. Geofluids, 2008, 8(1): 46-59.
    [34]
    GUO Xiaowen, LIU Keyu, JIA Chengzao, et al. Fluid evolution in the Dabei Gas Field of the Kuqa Depression, Tarim Basin, NW China: implications for fault-related fluid flow[J]. Marine and Petroleum Geology, 2016, 78: 1-16.
    [35]
    郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm

    GUO Xiaowen, CHEN Jiaxu, YUAN Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: a case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202003005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (386) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return