Volume 44 Issue 3
May  2022
Turn off MathJax
Article Contents
SHI Chunhua, SHAN Shujiao, HAO Jing, LUO Bing, CAO Jian. Inorganic geochemical characteristics and evaluation of Sinian-Cambrian post-mature source rocks in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 505-514. doi: 10.11781/sysydz202203505
Citation: SHI Chunhua, SHAN Shujiao, HAO Jing, LUO Bing, CAO Jian. Inorganic geochemical characteristics and evaluation of Sinian-Cambrian post-mature source rocks in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(3): 505-514. doi: 10.11781/sysydz202203505

Inorganic geochemical characteristics and evaluation of Sinian-Cambrian post-mature source rocks in Sichuan Basin

doi: 10.11781/sysydz202203505
  • Received Date: 2021-09-21
  • Rev Recd Date: 2022-04-28
  • Publish Date: 2022-05-28
  • The evaluation of post-mature source rocks gradually invalidates by traditional organic geochemical parameters due to the decreasing of organic matter abundance. However, the inorganic elements in source rocks are not easily affected by thermal evolution. In order to explore the application of inorganic geochemical methods in the evaluation of post-mature source rocks, this paper takes the Sinian-Cambrian source rocks in the Sichuan Basin as an example to conduct an evaluation based on the inorganic (major, trace and rare earth elements) geochemistry method with three controlling factors of source rock development (paleoproductivity, sedimentary environment and sedimentary rate). The concentration of Ba and Ni, MoEF and UEF and Ce anomaly, and TiO2/Al2O3 ratio could be correlated with paleoproducitvity, sedimentary environment and sedimentary rate, respectively. The results showed that the enrichment of organic matter was mainly controlled by sedimentary environment and paleoproductivity, but are barely effected by sedimentary rate. Source rocks in the Lower Cambrian Qiongzhusi Formation in the central Sichuan and Weiyuan-Ziyang areas have high paleoproductivity and the most reduced environment and thus are one of the best quality source rocks. Therefore, inorganic geochemistry method is an effective way to evaluate postmature source rocks.

     

  • loading
  • [1]
    程克明, 王兆云. 高成熟和过成熟海相碳酸盐岩生烃条件评价方法研究[J]. 中国科学(D辑地球科学), 1996, 26(6): 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606009.htm

    CHENG Keming, WANG Zhaoyun. An evaluation method of hydrocarbon generating potential of highly mature and over-mature marine carbonate[J]. Science in China (Series D Earth Sciences), 1997, 40(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199606009.htm
    [2]
    ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206: 289-318. doi: 10.1016/j.chemgeo.2003.12.009
    [3]
    TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232: 12-32. doi: 10.1016/j.chemgeo.2006.02.012
    [4]
    TRIBOVILLARD N, ALGEO T J, BAUDIN F, et al. Analysis of marine environmental conditions based on molybdenum-uranium covariation: applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324/325: 46-58. doi: 10.1016/j.chemgeo.2011.09.009
    [5]
    LEWAN M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984, 48: 2231-2238. doi: 10.1016/0016-7037(84)90219-9
    [6]
    PARNELL J. Metal enrichment in bitumens from Carboniferous-hosted ore deposits of the British Isles[J]. Chemical Geology, 1992, 99: 115-124. doi: 10.1016/0009-2541(92)90034-3
    [7]
    腾格尔, 刘文汇, 徐永昌, 等. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200. doi: 10.3321/j.issn:1001-8166.2005.02.009

    TENGER, LIU Wenhui, XU Yongchang, et al. Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment[J]. Advances in Earth Science, 2005, 20(2): 193-200. doi: 10.3321/j.issn:1001-8166.2005.02.009
    [8]
    腾格尔, 刘文汇, 徐永昌, 等. 高演化海相碳酸盐烃源岩地球化学综合判识: 以鄂尔多斯盆地为例[J]. 中国科学(D辑地球科学), 2006, 36(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200602005.htm

    TENGER, LIU Wenhui, XU Yongchang, et al. Comprehensive geochemical identification of highly evolved marine carbonate rocks as hydrocarbon-source rocks as exemplified by the Ordos Basin[J]. Science in China (Series D Earth Sciences), 2006, 49(4): 384-396. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200602005.htm
    [9]
    魏国齐, 沈平, 杨威, 等. 四川盆地震旦系大气田形成条件与勘探远景区[J]. 石油勘探与开发, 2013, 40(2): 129-138. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302000.htm

    WEI Guoqi, SHEN Ping, YANG Wei, et al. Formation conditions and exploration prospects of Sinian large gas fields, Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(2): 139-149. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201302000.htm
    [10]
    SHI Chunhua, CAO Jian, TAN Xiucheng, et al. Hydrocarbon generation capability of Sinian-Lower Cambrian shale, mudstone and carbonate rocks in the Sichuan Basin, southwestern China: implications for contributions to the giant Sinian Dengying natural gas accumulation[J]. AAPG Bulletin, 2018, 102(5): 817-853. doi: 10.1306/0711171417417019
    [11]
    WANG Shufang, ZOU Caineng, DONG Dazhong, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672. doi: 10.1016/j.marpetgeo.2015.07.009
    [12]
    WANG Ning, LI Meijun, TIAN Xingwang, et al. Climate-ocean control on the depositional watermass conditions and organic matter enrichment in lower Cambrian black shale in the Upper Yangtze Platform[J]. Marine and Petroleum Geology, 2020, 120: 104570. doi: 10.1016/j.marpetgeo.2020.104570
    [13]
    XIAO Wenyao, CAO Jian, LUO Bing, et al. Marinoan glacial aftermath in South China: paleo-environmental evolution and organic carbon accumulation in the Doushantuo shales[J]. Chemical Geo-logy, 2020, 555: 119838. doi: 10.1016/j.chemgeo.2020.119838
    [14]
    GAO Ping, LI Shuangjian, LASH G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intraplatfrom basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2021, 130: 105095. doi: 10.1016/j.marpetgeo.2021.105095
    [15]
    XIAO Di, CAO Jian, LUO Bing, et al. Neoproterozoic postglacial paleoenvironment and hydrocarbon potential: a review and new insights from the Doushantuo Formation Sichuan Basin, China[J]. Earth-Science Reviews, 2021, 212: 103453. doi: 10.1016/j.earscirev.2020.103453
    [16]
    周国晓, 魏国齐, 胡国艺, 等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm

    ZHOU Guoxiao, WEI Guoqi, HU Guoyi, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202004007.htm
    [17]
    杨雨, 曾云贤, 刘微. 川东北部地区飞仙关组沉积相对鲕滩储层分布的控制[J]. 天然气勘探与开发, 2002, 25(3): 1-9. doi: 10.3969/j.issn.1673-3177.2002.03.001

    YANG Yu, ZENG Yunxian, LIU Wei. The control of Feixianguan Formation's sedimentary facies to oolitic beach reservoir in northeast Sichuan Basin[J]. Natural Gas Exploration and Deve-lopment, 2002, 25(3): 1-9. doi: 10.3969/j.issn.1673-3177.2002.03.001
    [18]
    徐春春, 李俊良, 姚宴波, 等. 中国海相油气田勘探实例之八: 四川盆地磨溪气田嘉二气藏的勘探与发现[J]. 海相油气地质, 2006, 11(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200604007.htm

    XU Chunchun, LI Junliang, YAO Yanbo, et al. Cases of discovery and exploration of marine fields in China (part 8): Triassic T3j2 reservoir of Moxi gas field in Sichuan Basin: marine origin[J]. Petroleum Geology, 2006, 11(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200604007.htm
    [19]
    KATZ B J. Controlling factors on source rock development: a review of productivity, preservation, and sedimentation rate[J]. SEPM Special Publication, 2005, 82: 7-16.
    [20]
    TYSON R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study[J]. Organic Geochemistry, 2001, 32, 333-339. doi: 10.1016/S0146-6380(00)00161-3
    [21]
    DICK G J, Anantharaman K, Baker B J, et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats[J]. Frontiers in Microbiology, 2013, 4: 124.
    [22]
    HUNTSMAN-MAPILA P, Kampunzu A B, Vink B, et al. Cryptic indicators of provenance from the geochemistry of the Okavango Delta sediments, Botswana[J]. Sedimentary Geology, 2005, 174: 123-148. doi: 10.1016/j.sedgeo.2004.11.001
    [23]
    SCHOEPFER S D, SHEN J, WEI H, et al. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity[J]. Earth-Science Reviews, 2015, 149: 23-52.
    [24]
    PIPER D Z, PERKINS R B. A modern vs. Permian black shale: the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206: 177-197.
    [25]
    马叶情. 峨嵋高桥麦地坪组磷元素富集与小壳生物演化关系[D]. 成都: 成都理工大学, 2008.

    MA Yeqing. Relationships between concentration of phosphorus and evolutionary of small shelly faunas from the Cabrian Maidiping Formation in Emei, Sichuan Province[D]. Chengdu: Chengdu University of Technology, 2008.
    [26]
    SHI Chunhua, CAO Jian, LUO Bing, et al. Major elements trace hydrocarbon sources in over-mature petroleum systems: insights from the Sinian Sichuan Basin, China[J]. Precambrian Research, 2020, 343, 105726.
    [27]
    ALGEO T J, TRIBOVILLARD N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268: 211-225
    [28]
    WEBB G E, KAMBER B S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64: 1557-1565.
    [29]
    TOSTEVIN R, SHIELDS G A, TARBUCK G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162.
    [30]
    TANAKA K, TANI Y, TAKAHASHI Y, et al. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2[J]. Geochimica et Cosmochimica Acta, 2010, 74: 5463-5477.
    [31]
    MURPHY A E, SAGEMAN B B, HOLLANDER D J, et al. Black shale deposition and faunal overturn in the Devonian Appalachian Basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling[J]. Paleoceanography, 2000, 15: 280-291.
    [32]
    RIMMER S M, THOMPSON J A, GOODNIGHT S A. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 215: 125-154.
    [33]
    刘建良, 刘可禹碳酸盐岩地层完整性分析及其影响因素定量评价: 来自地层正演模拟的启示[J]. 中国科学(地球科学), 2021, 51(1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101012.htm

    LIU Jianliang, LIU Keyu. Estimating stratal completeness of carbonate deposition via process-based stratigraphic forward modeling[J]. Science China (Earth Sciences), 2021, 64: 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101012.htm
    [34]
    陆扬博. 上扬子五峰组和龙马溪组富有机质页岩岩相定量表征及沉积过程恢复[D]. 武汉: 中国地质大学, 2020.

    LU Yangbo. Quantitative characterization of lithofacies and reconstruction of the sedimentary process for Upper Yangtze Wufeng and Longmaxi organic-rich shales[D]. Wuhan: China University of Geosciences, 2020.
    [35]
    汪泽成, 刘静江, 姜华, 等. 中-上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发, 2019, 46(1): 39-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901004.htm

    WANG Zecheng, LIU Jingjiang, JIANG Hua, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the Middle-Upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 41-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901004.htm
    [36]
    文龙, 罗冰, 钟原, 等. 四川盆地灯影期沉积特征及槽-台体系成因模式[J]. 成都理工大学学报(自然科学版), 2021, 48(5): 513-524. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202105001.htm

    WEN Long, LUO Bing, ZHONG Yuan, et al. Sedimentary characte-ristics and genetic model of trough-platform system during the Dengying period in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science&Technology Edition), 2021, 48(5): 513-524. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202105001.htm
    [37]
    许海龙, 魏国齐, 贾承造, 等. 乐山-龙女寺古隆起构造演化及对震旦系成藏的控制[J]. 石油勘探与开发, 2012, 39(4): 406-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204004.htm

    XU Hailong, WEI Guoqi, JIA Chengzao, et al. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata[J]. Petroleum Exploration and Development, 2012, 39(4): 436-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201204004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (369) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return