Volume 44 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
YU Miao, GAO Gang, JIN Jun, MA Wanyun, HE Dan, XIANG Baoli, FAN Keting, LIU Miao. Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687
Citation: YU Miao, GAO Gang, JIN Jun, MA Wanyun, HE Dan, XIANG Baoli, FAN Keting, LIU Miao. Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 687-697. doi: 10.11781/sysydz202204687

Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1

doi: 10.11781/sysydz202204687
  • Received Date: 2021-07-29
  • Rev Recd Date: 2022-06-14
  • Publish Date: 2022-07-28
  • With the deepened exploration progress in the Junggar Basin, the lower assemblage has increasingly become the focus for oil and gas exploration. However, systematic research has not been achieved on the hydrocarbon generation characteristics of the lower assemblage source rocks, and systematic experimental analysis has not been carried out on the hydrocarbon generation potential and oil and gas generation capacity of coaly source rocks with different lithology. Oil and gas have highly yielded in the well of Gaotan 1 in the Gaoquan anticline, and which lithology of coaly source rocks have the closest relationship with it is worth for a further discussion. Sealed vessel autoclave hydrous simulation of Jurassic coaly rock, carbonaceous mudstone and mudstone was carried out in this study, results show that carbonaceous mudstone and mudstone have high oil generation potential. Carbonaceous mudstone is the main contributor of Jurassic coal formed oil, and cutinite may be the main oil source in carbonaceous mudstone. Coaly rock has higher gas generation potential than carbonaceous mudstone and mudstone in higher evolution stage, mainly generating kerogen cracking gas. The carbon isotopic fractionation of simulated gas appears in vary degrees with the increase of evolution, that is, with the increase of maturity, the stable carbon isotope of gas first becomes lighter and then becomes heavier, and the δ13C1 fractionation is more obvious than that of δ13C2. Combined with simulation experiments, the oil and gas source of well Gaotan 1 was further analyzed. It was then concluded that the crude oil of Cretaceous Qingshuihe Formation in well Gaotan 1 is mainly high-mature crude oil generated by Jurassic carbonaceous mudstone, and the three lithologic coaly source rocks contributed to natural gas.

     

  • loading
  • [1]
    陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地南缘油气生成与分布规律: 烃源岩地球化学特征与生烃史[J]. 石油学报, 2015, 36(7): 767-780.

    CHEN Jianping, WANG Xulong, DENG Chunping, et al. Geoche-mcial features of source rocks in the southern margin, Junggar Basin, Northwestern China[J]. Acta Petrolei Sinica, 2015, 36(7): 767-780.
    [2]
    龙华山, 王绪龙, 向才富, 等. 准噶尔盆地南缘侏罗系烃源岩评价[J]. 现代地质, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009

    LONG Huashan, WANG Xulong, XIANG Caifu, et al. Evaluation on Jurassic hydrocarbon source rock developed in southern margin of Junggar Basin[J]. Geoscience, 2013, 27(5): 1070-1080. doi: 10.3969/j.issn.1000-8527.2013.05.009
    [3]
    郭继刚, 王绪龙, 庞雄奇, 等. 准噶尔盆地南缘中下侏罗统烃源岩评价及排烃特征[J]. 中国矿业大学学报, 2013, 42(4): 595-605. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304014.htm

    GUO Jigang, WANG Xulong, PANG Xiongqi, et al. Evaluaton and hydrocarbon expulsion characteristics of the Middle-Lower Jurassic source rock in the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2013, 42(4): 595-605. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201304014.htm
    [4]
    杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望[J]. 石油勘探与开发, 2019, 46(2): 205-215.

    DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 205-215.
    [5]
    雷德文, 唐勇, 常秋生. 准噶尔盆地南缘深部优质储集层及有利勘探领域[J]. 新疆石油地质, 2008, 29(4): 435-438. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804010.htm

    LEI Dewen, TANG Yong, CHANG Qiusheng. The deep and relatively high-quality clastic reservoir bodies and favorable exploration areas in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(4): 435-438. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200804010.htm
    [6]
    魏东涛, 赵应成, 阿不力米提, 等. 准噶尔盆地南缘前陆冲断带油气成藏差异性分析[J]. 高校地质学报, 2010, 16(3): 339-350. doi: 10.3969/j.issn.1006-7493.2010.03.007

    WEI Dongtao, ZHAO Yingcheng, ABULIMITI, et al. Difference of hydrocarbon accumulation in the foreland thrust-fold belt of the southern Junggar Basin[J]. Geological Journal of China Universities, 2010, 16(3): 339-350. doi: 10.3969/j.issn.1006-7493.2010.03.007
    [7]
    靳军, 王飞宇, 任江玲, 等. 四棵树凹陷高探1井高产油气成因与烃源岩特征[J]. 新疆石油地质, 2019, 40(2): 145-151.

    JIN Jun, WANG Feiyu, REN Jiangling, et al. Genesis of high-yield oil and gas in well Gaotan-1 and characteristics of source rocks in Sikeshu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(2): 145-151.
    [8]
    陈建平, 王绪龙, 倪云燕, 等. 准噶尔盆地南缘天然气成因类型与气源[J]. 石油勘探与开发, 2019, 46(3): 461-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903006.htm

    CHEN Jianping, WANG Xulong, NI Yunyan, et al. Genetic type and source of natural gas in the southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 461-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903006.htm
    [9]
    王屿涛. 准噶尔盆地南缘油气资源潜力和富集规律[J]. 勘探家, 2000, 5(1): 49-51.

    WANG Yutao. Oil and gas resource potential and abundance law on southern periphery of Junggar Basin[J]. Petroleum Explorationist, 2000, 5(1): 49-51.
    [10]
    李学义, 邵雨, 李天明. 准噶尔盆地南缘三个油气成藏组合研究[J]. 石油勘探与开发, 2003, 30(6): 32-34. doi: 10.3321/j.issn:1000-0747.2003.06.009

    LI Xueyi, SHAO Yu, LI Tianming. Three oil-reservoir combinations in south marginal of Jungar Basin, Northwest China[J]. Petroleum Exploration and Development, 2003, 30(6): 32-34. doi: 10.3321/j.issn:1000-0747.2003.06.009
    [11]
    李吉君, 卢双舫, 薛海涛, 等. 准噶尔盆地南缘中下侏罗统煤系烃源岩生气史[J]. 新疆石油地质, 2010, 31(4): 369-371.

    LI Jijun, LU Shuangfang, XUE Haitao, et al. Gas-generating history from Middle-Lower Jurassic coal measures in southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2010, 31(4): 369-371.
    [12]
    孙平安, 卞保力, 袁云峰, 等. 准噶尔盆地南缘天然气地球化学与成因研究[J]. 地球化学, 2015, 44(3): 275-288. doi: 10.3969/j.issn.0379-1726.2015.03.007

    SUN Pingan, BIAN Baoli, YUAN Yunfeng, et al. Natural gas in southern Junggar Basin in northwest China: geochemistry and origin[J]. Geochimica, 2015, 44(3): 275-288. doi: 10.3969/j.issn.0379-1726.2015.03.007
    [13]
    马万云, 迪丽达尔·肉孜, 李际, 等. 准噶尔盆地南缘侏罗系烃源岩生烃特征[J]. 新疆石油地质, 2020, 41(1): 31-37.

    MA Wanyun, DILIDAER Rouzi, LI Ji, et al. Hydrocarbon generation of Jurassic source rocks in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2020, 41(1): 31-37.
    [14]
    高岗. 油气生成模拟方法及其石油地质意义[J]. 天然气地球科学, 2000, 11(2): 25-29.

    GAO Gang. Method of petroleum-generating simulation and its petroleum geological significance[J]. Natural Gas Geoscience, 2000, 11(2): 25-29.
    [15]
    刘栩, 程青松. 准噶尔盆地侏罗系煤系烃源岩有机显微组成及意义[J]. 河北工程大学学报(自然科学版), 2020, 37(3): 82-90.

    LIU Xu, CHENG Qingsong. Organic macerals of source rocks of Jurassic coal measures in Junggar Basin and their significance[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2020, 37(3): 82-90.
    [16]
    马风华, 潘进礼, 马瑞赟, 等. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.

    MA Fenghua, PAN Jinli, MA Ruiyun, et al. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin[J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
    [17]
    黄光辉, 张敏, 胡国艺, 等. 原油裂解气和干酪根裂解气的地球化学研究(Ⅱ): 原油裂解气和干酪根裂解气的区分方法[J]. 中国科学(D辑: 地球科学), 2008, 38(S2): 9-16.

    HUANG Guanghui, ZHANG Min, HU Guoyi, et al. Geochemical study on oil-cracked gases and kerogen-cracked gases (Ⅱ): discrimination methods between oil-cracked gases and kerogen-cracked gases[J]. Science in China(Series D: Earth Sciences), 2009, 52(S1): 10-18.
    [18]
    帅燕华, 邹艳荣, 彭平安. 天然气甲烷碳同位素动力学模型与地质应用新进展[J]. 地球科学进展, 2003, 18(3): 405-411.

    SHUAI Yanhua, ZOU Yanrong, PENG Ping'an, et al. Kinetic model for the stable carbon isotope of methane: the state of the art[J]. Advance in Earth Sciences, 2003, 18(3): 405-411.
    [19]
    田辉, 肖贤明, 李贤庆, 等. 海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J]. 地球化学, 2007, 36(1): 71-77.

    TIAN Hui, XIAO Xianming, LI Xianqing, et al. Comparison of gas generation and carbon isotope fractionation of methane from marine kerogen- and crude oil-cracking gases[J]. Geochimica, 2007, 36(1): 71-77.
    [20]
    毛榕, 米敬奎, 张水昌, 等. 不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J]. 天然气地球科学, 2012, 23(6): 1127-1134.

    MAO Rong, MI Jingkui, ZHANG Shuichang, et al. Study on the hydrocarbon generation characteristics of different coaly source rocks by gold-tube pyrolysis experiment[J]. Natural Gas Geoscience, 2012, 23(6): 1127-1134.
    [21]
    陈磊, 郑伦举, 黄海平, 等. 碳酸盐岩烃源岩不同热模拟方式下气体碳同位素演变特征[J]. 石油实验地质, 2022, 44(1): 121-128. doi: 10.11781/sysydz202201121

    CHEN Lei, ZHENG Lunju, HUANG Haiping, et al. Carbon isotopic evolution of hydrocarbon gases generated from carbonate source rocks via different thermal simulation methods[J]. Petroleum Geo-logy & Experiment, 2022, 44(1): 121-128. doi: 10.11781/sysydz202201121
    [22]
    LU Shuangfang, LI Jijun, XUE Haitao, et al. Pyrolytic gaseous hydrocarbon generation and the kinetics of carbon isotope fractionation in representative model compounds with different chemical structures[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1773-1793.
    [23]
    GAO Jinliang, LIU Jiaqi, NI Yunyan. Gas generation and its isotope composition during coal pyrolysis: the catalytic effect of nickel and magnetite[J]. Fuel, 2018, 222: 74-82.
    [24]
    高岗, 柳广弟, 王兆峰. 生烃模拟结果的校正[J]. 新疆石油地质, 2005, 26(2): 202-205.

    GAO Gang, LIU Guangdi, WANG Zhaofeng. Correction of results from hydrocarbon-generating simulation[J]. Xinjiang Petroleum Geology, 2005, 26(2): 202-205.
    [25]
    郭春清, 沈忠民, 张林晔, 等. 准噶尔盆地南缘烃源岩生源特征及原油分类[J]. 成都理工大学学报(自然科学版), 2005, 32(3): 257-262.

    GUO Chunqing, SHEN Zhongmin, ZHANG Linye, et al. Biogenic origin characteristics of hydrocarbon source rocks and classification of oils in the south part of Junggar Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2005, 32(3): 257-262.
    [26]
    程克明, 赵长毅, 苏爱国, 等. 吐哈盆地煤成油气的地质地球化学研究[J]. 勘探家, 1997(2): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199702001.htm

    CHENG Keming, ZHAO Changyi, SU Aiguo, et al. Geological and geochemical studies on coal-formed oil and gas in Turpan-Hami Basin[J]. China Petroleum Exploration, 1997(2): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY199702001.htm
    [27]
    刘全有, 刘文汇, 宋岩, 等. 塔里木盆地煤岩显微组分热模拟实验中液态烃特征研究[J]. 天然气地球科学, 2004, 15(3): 297-301.

    LIU Quanyou, LIU Wenhui, SONG Yan, et al. Characteristics of liquid hydrocarbon for Tarim coal and its macerals in thermal pyrolysis experiments[J]. Natural Gas Geoscience, 2004, 15(3): 297-301.
    [28]
    刘全有, 刘文汇, 王长华. 依据热模拟实验动态建立煤成烃模式[J]. 天然气地球科学, 2009, 20(1): 20-25.

    LIU Quanyou, LIU Wenhui, WANG Changhua. Mathematical simulation of coal-generating hydrocarbons based on pyrolysis products from coal macerals under closed system[J]. Natural Gas Geoscience, 2009, 20(1): 20-25.
    [29]
    戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14): 1290-1305.

    DAI Jinxing. Coal-derived gas theory and its discrimination[J]. Chinese Science Bulletin, 2018, 63(14): 1290-1305.
    [30]
    中国石油学会石油地质委员会. 天然气勘探[M]. 北京: 石油工业出版社, 1986.

    China Institute of Petroleum Oil Geology Committee. Natural gas exploration and development[M]. Beijing: Petroleum Industry Press, 1986.
    [31]
    郑建京, 温德顺, 孟仟祥, 等. 煤系烃源岩热模拟演化过程的地球化学参数特征: 以准噶尔盆地侏罗系煤系烃源岩为例[J]. 天然气地球科学, 2003, 14(2): 134-139.

    ZHENG Jianjing, WEN Deshun, MENG Qianxiang, et al. Characte-ristics of geochemical parameters of coal measures source rock in the thermal simulation experiment[J]. Natural Gas Geoscience, 2003, 14(2): 134-139.
    [32]
    POWELL T G, CREANEY S, SNOWDON L R. Limitations of use of organic petrographic techniques for identification of petroleum source rocks[J]. AAPG Bulletin, 1982, 66(4): 430-435.
    [33]
    TISSOT B P. Recent advances in petroleum geochemistry applied to hydrocarbon exploration[J]. AAPG Bulletin, 1984, 68(5): 545-563.
    [34]
    陈建平, 王绪龙, 陈践发, 等. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学(地球科学), 2021, 51(4): 560-581.

    CHEN Jianping, WANG Xulong, CHEN Jianfa, et al. A new formula for judging the maturity of natural gas and its source rock by methane carbon isotope[J]. Scientia Sinica (Terrae), 2021, 51(4): 560-581.
    [35]
    刘文汇, 王晓锋, 腾格尔, 等. 中国近十年天然气示踪地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 279-289.

    LIU Wenhui, WANG Xiaofeng, TENGER, et al. Research progress of gas geochemistry during the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 279-289.
    [36]
    BERNARD B B, BROOKS J M, SACKETT W M. A geochemical model for characterization of hydrocarbon gas sources in marine sediments[C]//Proceedings of the Ninth Annual Offshore Technology Conference. Houston: 1977: 435-438.
    [37]
    SCHOELL M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.
    [38]
    沈平, 申歧祥, 王先彬, 等. 气态烃同位素组成特征及煤型气判识[J]. 中国科学: 化学, 1987, 17(6): 647-656.

    SHEN Ping, SHEN Qixiang, WANG Xianbin, et al. Isotopic composition characteristics of gaseous hydrocarbons and identification of coal type gas[J]. Science China Chemistry, 1987, 17(6): 647-656.
    [39]
    戴金星. 各类烷烃气的鉴别[J]. 中国科学(B辑化学生命科学地学), 1992(2): 185-193.

    DAI Jinxing. Identification of various alkane gases[J]. Scientia Sinica(Chimica), 1992(2): 185-193.
    [40]
    戴金星. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学, 1993, 4(2/3): 1-40.

    DAI Jinxing. Hydrocarbon isotopic characteristics of natural gas and identification of various natural gases[J]. Natural Gas Geoscience, 1993, 4(2/3): 1-40.
    [41]
    戴金星, 倪云燕, 黄士鹏, 等. 中国天然气水合物气的成因类型[J]. 石油勘探与开发, 2017, 44(6): 837-848.

    DAI Jinxing, NI Yunyan, HUANG Shipeng, et al. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Deve-lopment, 2017, 44(6): 837-848.
    [42]
    WHITICAR M J. Correlation of natural gases with their sources[C]//MAGOON L, DOW W. The petroleum system: from source to trap, AAPG memoir 60. Tulsa: AAPG, 1994: 261-283.
    [43]
    WHITICAR M J. Stable isotope geochemistry of coals, humic kerogens and related natural gases[J]. International Journal of Coal Geology, 1996, 32(1/4): 191-215.
    [44]
    WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291-314.
    [45]
    戴金星, 倪云燕, 秦胜飞, 等. 四川盆地超深层天然气地球化学特征[J]. 石油勘探与开发, 2018, 45(4): 588-597.

    DAI Jinxing, NI Yunyan, QIN Shengfei, et al. Geochemical characteristics of ultra-deep natural gas in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(4): 588-597.
    [46]
    柳波, 黄志龙, 罗权生, 等. 吐哈盆地北部山前带下侏罗统天然气气源与成藏模式[J]. 中南大学学报(自然科学版), 2012, 43(1): 258-264.

    LIU Bo, HUANG Zhilong, LUO Quansheng, et al. Accumulation mode and resource of Lower Jurassic gas reservoir of Northern Foothill Belt, Turpan-Hami Basin[J]. Journal of Central South University(Science and Technology), 2012, 43(1): 258-264.
    [47]
    倪云燕, 廖凤蓉, 龚德瑜, 等. 吐哈盆地台北凹陷天然气碳氢同位素组成特征[J]. 石油勘探与开发, 2019, 46(3): 509-520.

    NI Yunyan, LIAO Fengrong, GONG Deyu, et al. Stable carbon and hydrogen isotopic characteristics of natural gas from Taibei Sag, Turpan-Hami Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(3): 509-520.
    [48]
    史基安, 孙秀建, 王金鹏, 等. 天然气运移物理模拟实验及其组分分异与碳同位素分馏特征[J]. 石油实验地质, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293

    SHI Ji'an, SUN Xiujian, WANG Jinpeng, et al. Physical simulating experiment of natural gas migration and its characteristics of composition differentiation and carbon isotope fractionation[J]. Petroleum Geology & Experiment, 2005, 27(3): 293-298. doi: 10.11781/sysydz200503293
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (435) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return