Volume 44 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
GAO Zhiwei, ZHANG Cong, LI Meijun, FANG Ronghui, BORJIGIN Tenger, XIAO Hong, ZHU Zhili. Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705
Citation: GAO Zhiwei, ZHANG Cong, LI Meijun, FANG Ronghui, BORJIGIN Tenger, XIAO Hong, ZHU Zhili. Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 705-711. doi: 10.11781/sysydz202204705

Application of laser Raman spectroscopic parameters of coal maceral analysis with different maturity

doi: 10.11781/sysydz202204705
  • Received Date: 2021-07-07
  • Rev Recd Date: 2022-06-14
  • Publish Date: 2022-07-28
  • Laser Raman spectroscopy has shown a good application prospect for maceral analysis. Raman spectroscopic analysis of different macerals (e.g., vitrinite, semifusinite and macrinite) in coal samples with different maturity (%Ro=0.49%-1.88%) was carried out in this study, and results show that three macerals have significantly different Raman spectrum parameters, which have the following implications for the macerals analysis of coal: (1) Macerals in coal samples can be distinguished by the combination of Raman spectrum parameters. There are 21 kinds of parameter combinations discussed in this study, which can be used as reference standard for the classification of these organic macerals; (2) Peak displacement (WD1) is the most critical parameter to distinguish the macerals of coal samples. The influence of thermal evolution should be considered, which may assistant for the study of maceral differences in the Lower Paleozoic which are in the high to over mature stage with optical properties gradually converging. Therefore, Raman spectrum parameters can be used as an effective method for maceral analysis.

     

  • loading
  • [1]
    张慧, 焦淑静, 庞起发, 等. 中国南方早古生代页岩有机质的扫描电镜研究[J]. 石油与天然气地质, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm

    ZHANG Hui, JIAO Shujing, PANG Qifa, et al. SEM observation of organic matters in the Eopaleozoic shale in South China[J]. Oil & Gas Geology, 2015, 36(4): 675-680. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504019.htm
    [2]
    高凤琳, 宋岩, 梁志凯, 等. 陆相页岩有机质孔隙发育特征及成因: 以松辽盆地长岭断陷沙河子组页岩为例[J]. 石油学报, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm

    GAO Fenglin, SONG Yan, LIANG Zhikai, et al. Development characteristics of organic pore in the continental shale and its genetic mechanism: a case study of Shahezi Formation shale in the Changling Fault Depression of Songliao Basin[J]. Acta Petrolei Sinica, 2019, 40(9): 1030-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201909002.htm
    [3]
    仰云峰, 鲍芳, 腾格尔, 等. 四川盆地不同成熟度下志留统龙马溪组页岩有机孔特征[J]. 石油实验地质, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387

    YANG Yunfeng, BAO Fang, BORJIGIN T, et al. Characteristics of organic matter hosted pores in Lower Silurian Longmaxi shale with different maturities, Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 387-397. doi: 10.11781/sysydz202003387
    [4]
    焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm

    JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV201802007.htm
    [5]
    高凤琳, 王成锡, 宋岩, 等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360

    GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polish-ing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology & Experiment, 2021, 43(2): 360-367. doi: 10.11781/sysydz202102360
    [6]
    翟刚毅, 王玉芳, 包书景, 等. 我国南方海相页岩气富集高产主控因素及前景预测[J]. 地球科学, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm

    ZHAI Gangyi, WANG Yufang, BAO Shujing, et al. Major factors controlling the accumulation and high productivity of marine shale gas and prospect forecast in Southern China[J]. Earth Science, 2017, 42(7): 1057-1068. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707002.htm
    [7]
    徐学敏, 孙玮琳, 汪双清, 等. 南方下古生界海相页岩有机质成熟度评价[J]. 地球科学, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htm

    XU Xuemin, SUN Weilin, WANG Shuangqing, et al. Maturity evaluation of marine shale in the Lower Paleozoic in South China[J]. Earth Science, 2019, 44(11): 3717-3724. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911011.htm
    [8]
    陈尚斌, 左兆喜, 朱炎铭, 等. 页岩气储层有机质成熟度测试方法适用性研究[J]. 天然气地球科学, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htm

    CHEN Shangbin, ZUO Zhaoxi, ZHU Yanming, et al. Applicability of the testing method for the maturity of organic matter in shale gas reservoirs[J]. Natural Gas Geoscience, 2015, 26(3): 564-574. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201503020.htm
    [9]
    程鹏, 肖贤明. 很高成熟度富有机质页岩的含气性问题[J]. 煤炭学报, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm

    CHENG Peng, XIAO Xianming. Gas content of organic-rich shales with very high maturities[J]. Journal of China Coal Society, 2013, 38(5): 737-741. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305004.htm
    [10]
    罗情勇, 郝婧玥, 李可文, 等. 下古生界有机质成熟度评价新参数: 笔石表皮体光学特征再研究[J]. 地质学报, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017

    LUO Qingyong, HAO Jingyue, LI Kewen, et al. A new parameter for the thermal maturity assessment of organic matter from the Lower Palaeozoic sediments: a re-study on the optical characte-ristics of graptolite periderms[J]. Acta Geologica Sinica, 2019, 93(9): 2362-2371. doi: 10.3969/j.issn.0001-5717.2019.09.017
    [11]
    HENRY D G, JARVIS I, GILLMORE G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936.
    [12]
    鲍芳, 腾格尔, 仰云峰, 等. 不同成烃生物的拉曼光谱特征[J]. 高校地质学报, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htm

    BAO Fang, TENGGER, YANG Yunfeng, et al. Raman spectroscopic characteristics of different hydrocarbon-forming orga-nisms[J]. Geological Journal of China Universities, 2012, 18(1): 174-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201201018.htm
    [13]
    鲍芳, 李志明, 张美珍, 等. 激光拉曼光谱在有机显微组分研究中的应用[J]. 石油实验地质, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104

    BAO Fang, LI Zhiming, ZHANG Meizhen, et al. Application of laser Raman spectrum in organic maceral studies[J]. Petroleum Geology & Experiment, 2012, 34(1): 104-108. doi: 10.11781/sysydz201201104
    [14]
    HENRY D G, JARVIS I, GILLMORE G, et al. Assessing low-maturity organic matter in shales using Raman spectroscopy: effects of sample preparation and operating procedure[J]. International Journal of Coal Geology, 2018, 191: 135-151.
    [15]
    刘德汉, 肖贤明, 田辉, 等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报, 2013, 58(13): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm

    LIU Dehan, XIAO Xianming, TIAN Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications[J]. Chinese Science Bulletin, 2013, 58(11): 1285-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313010.htm
    [16]
    肖贤明, 周秦, 程鹏, 等. 高—过成熟海相页岩中矿物-有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(地球科学), 2020, 50(9): 1228-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm

    XIAO Xianming, ZHOU Qin, CHENG Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China Earth Sciences, 2020, 63(10): 1540-1552. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202009006.htm
    [17]
    WILKINS R W T, BOUDOU R, SHERWOOD N, et al. Thermal maturity evaluation from inertinites by Raman spectroscopy: the 'RaMM' technique[J]. International Journal of Coal Geology, 2014, 128-129: 143-152.
    [18]
    WILKINS R W T, WANG M, GAN H J, et al. A RaMM study of thermal maturity of dispersed organic matter in marine source rocks[J]. International Journal of Coal Geology, 2015, 150-151: 252-264.
    [19]
    WANG Ye, QIU Nansheng, BORJIGIN T, et al. Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019, 100: 447-465.
    [20]
    王茂林, 肖贤明, 魏强, 等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm

    WANG Maolin, XIAO Xianming, WEI Qiang, et al. Thermal matu-ration of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201509013.htm
    [21]
    左兆喜, 陈尚斌, 史乾, 等. 激光拉曼法在高—过成熟页岩及煤成熟度评价中的应用[J]. 岩矿测试, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htm

    ZUO Zhaoxi, CHEN Shangbin, SHI Qian, et al. Application of laser Raman spectroscopy to the evaluation of the high- and overhigh-maturity of shale and coal[J]. Rock and Mineral Analysis, 2016, 35(2): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602012.htm
    [22]
    XU Chang, YAO Suping, SONG Di, et al. Types, chemical and porosity characteristics of hydrocarbon-generating organisms of the Lower Paleozoic, South China: taking Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin as examples[J]. Marine and Petroleum Geology, 2020, 119: 104508.
    [23]
    张聪, 夏响华, 杨玉茹, 等. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义[J]. 岩矿测试, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htm

    ZHANG Cong, XIA Xianghua, YANG Yuru, et al. Raman spectrum characteristics of organic matter in Silurian Longmaxi Formation shale of well Anye-1 and its geological significance[J]. Rock and Mineral Analysis, 2019, 38(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201901003.htm
    [24]
    田野, 田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htm

    TIAN Ye, TIAN Yuntao. Fundamentals and applications of Raman Spectroscopy of Carbonaceous Material (RSCM) thermometry[J]. Advances in Earth Science, 2020, 35(3): 259-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202003004.htm
    [25]
    HAO Jingyue, ZHONG Ningning, LUO Qingyong, et al. Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China[J]. International Journal of Coal Geology, 2019, 213: 103278.
    [26]
    王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htm

    WANG Qiang, MAO Ning, YANG Yan, et al. Molecular structures and comparative analysis of macerals of vitrinite and inertinite for Qinghua coal, Ningxia[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2020S2020.htm
    [27]
    曹代勇, 魏迎春, 王安民, 等. 显微组分大分子结构演化差异性及其动力学机制: 研究进展与展望[J]. 煤田地质与勘探, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htm

    CAO Daiyong, WEI Yingchun, WANG Anmin, et al. The evolution difference of macromolecular structures and its dynamic mechanism of coal macerals: research status and prospect[J]. Coal Geology & Exploration, 2021, 49(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202101002.htm
    [28]
    BOCKLITZ T, WALTER A, HARTMANN K, et al. How to pre-process Raman spectra for reliable and stable models?[J]. Analytica Chimica Acta, 2011, 704(1/2): 47-56.
    [29]
    SCHITO A, ROMANO C, CORRADO S, et al. Diagenetic thermal evolution of organic matter by Raman spectroscopy[J]. Organic Geochemistry, 2017, 106: 57-67.
    [30]
    FERRALIS N, MATYS E D, KNOLL A H, et al. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy[J]. Carbon, 2016, 108: 440-449.
    [31]
    SAUERER B, CRADDOCK P R, ALJOHANI M D, et al. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation[J]. International Journal of Coal Geology, 2017, 173: 150-157.
    [32]
    李苗春. 下古生界烃源岩有机岩石学特征及其地质意义: 以上扬子地区为例[D]. 南京: 南京大学, 2014.

    LI Miaochun. The organic petrology and geological significance of Lower Paleozoic source rock: a case study of what in Upper Yangtze region[D]. Nanjing: Nanjing University, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (355) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return