Volume 44 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LUO Chao, ZHANG Huanxu, ZHANG Jizhi, SHI Xuewen, XU Zhiyao, ZHANG Yu, WU Wei. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712
Citation: LUO Chao, ZHANG Huanxu, ZHANG Jizhi, SHI Xuewen, XU Zhiyao, ZHANG Yu, WU Wei. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712

Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin

doi: 10.11781/sysydz202204712
  • Received Date: 2021-07-23
  • Rev Recd Date: 2022-06-13
  • Publish Date: 2022-07-28
  • The oil content in shale is still a contentious issue due to the evaporative losses of free hydrocarbon. Considering the objective of the evaluation of oil content in shale and the demand of fast analysis at wellsite, a newly developed sealed rock thermal desorption method is introduced to quantify the content of free hydrocarbon in rock samples which combined the technique of sealed crushing at low temperature and improved the traditional rock pyrolysis (Rock-Eval). Comparison experiments have been conducted on Jurassic Da'anzhai shale from the Sichun Basin. The S0 value ranges from 0.001 to 0.046 mg/g, with S1 value from 0.165 to 4.648 mg/g by routine method of rock pyrolysis. The S0 value by the sealed thermal desorption method, which ranges from 0.026 to 0.984 mg/g, is about 1-2 order of magnitude higher than that of Rock-Eval. By improving the heating program, the sealed thermal desorption method can obtain the hydrocarbon content per unit mass of rock at temperatures of 5, 5-90 and 90-300℃, which not only obtains abundant oil-bearing data, but also shortens detection time. Combined with parameters such as mud gas measurement, shale geochemical parameters, and reservoir fluid properties, the "sweet spots" of shale oil in the Da'anzhai Member of the study well were evaluated, providing a new experimental method for evaluating the oil content of shale oil.

     

  • loading
  • [1]
    JARVIE D M, COSKEY R J, JOHNSON M S, et al. The geology and geochemistry of the Parshall Field area, Mountrail County, North Dakota[M]//ESTES-JACKSON J E, ANDERSON D S. Revisiting and Revitalizing the Niobrara in the Central Rockies. Denver, Colo: Rocky Mountain Association of Geologists, 2011: 229-281.
    [2]
    蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characte-rization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [3]
    JARVIE D M. Shale resource systems for oil and gas: part 2—shale-oil resource systems[M]//BREYER J A. Shale reservoirs—giant resources for the 21st century. Tulsa: AAPG, 2012: 89-119.
    [4]
    蒋启贵, 黎茂稳, 马媛媛, 等. 页岩油可动性分子地球化学评价方法: 以济阳坳陷页岩油为例[J]. 石油实验地质, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849

    JIANG Qigui, LI Maowen, MA Yuanyuan, et al. Molecular geoche-mical evaluation of shale oil mobility: a case study of shale oil in Jiyang Depression[J]. Petroleum Geology & Experiment, 2018, 40(6): 849-854. doi: 10.11781/sysydz201806849
    [5]
    陶国亮, 刘鹏, 钱门辉, 等. 潜江凹陷潜江组盐间页岩含油性及其勘探意义[J]. 中国矿业大学学报, 2019, 48(6): 1256-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm

    TAO Guoliang, LIU Peng, QIAN Menhui, et al. Oil-bearing characteristics and exploration significance of inter-salt shale in Qianjiang Formation, Qianjiang Depression, Jianghan Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1256-1265. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201906011.htm
    [6]
    黄振凯, 郝运轻, 李双建, 等. 鄂尔多斯盆地长7段泥页岩层系含油气性与页岩油可动性评价: 以H317井为例[J]. 中国地质, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm

    HUANG Zhenkai, HAO Yunqing, LI Shuangjian, et al. Oil-bearing potential, mobility evaluation and significance of shale oil in Chang 7 shale system in the Ordos Basin: a case study of well H317[J]. Geology in China, 2020, 47(1): 210-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001018.htm
    [7]
    JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
    [8]
    黎茂稳, 金之钧, 董明哲, 等. 陆相页岩形成演化与页岩油富集机理研究进展[J]. 石油实验地质, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489

    LI Maowen, JIN Zhijun, DONG Mingzhe, et al. Advances in the basic study of lacustrine shale evolution and shale oil accumulation[J]. Petroleum Geology & Experiment, 2020, 42(4): 489-505. doi: 10.11781/sysydz202004489
    [9]
    ESPITALIÉ J, MARQUIS F, BARSONY I. Geochemical logging[M]//VOORHEES K J. Analytical Pyrolysis-Techniques and Applications. London: Butterworths, 1984: 276-304.
    [10]
    YASIN G, BHANGER M I, ANSARI T M, et al. Quality and chemistry of crude oils[J]. Journal of Petroleum Technology and Alternative Fuels, 2013, 4(3): 53-63.
    [11]
    张葳, 李智武, 冯逢, 等. 川中东北部中—下侏罗统湖相碳酸盐岩碳氧同位素特征及其古环境意义[J]. 古地理学报, 2013, 15(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302011.htm

    ZHANG Wei, LI Zhiwu, FENG Feng, et al. Carbon and oxygen isotopic composition of lacustrine carbonate rocks of the Lower-Middle Jurassic in NE part of central Sichuan Province and their palaeoenvironmental significance[J]. Journal of Palaeogeography, 2013, 15(2): 247-259. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201302011.htm
    [12]
    杜江民, 张小莉, 张帆, 等. 川中龙岗地区下侏罗统大安寨段沉积相分析及有利储集层预测[J]. 古地理学报, 2015, 17(4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504006.htm

    DU Jiangmin, ZHANG Xiaoli, ZHANG Fan, et al. Sedimentary facies and reservoir prediction of the Lower Jurassic Da'anzhai Member, Longgang area, central Sichuan Basin[J]. Journal of Palaeogeography, 2015, 17(4): 493-502. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504006.htm
    [13]
    王拥军, 童敏, 孙圆辉, 等. 四川盆地大安寨段介壳灰岩致密油储层特征[J]. 石油学报, 2019, 40(1): 42-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901003.htm

    WANG Youjun, TONG Min, SUN Yuanhui, et al. Reservoir characte-ristics of Da'anzhai shell limestone tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(1): 42-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201901003.htm
    [14]
    JARVIE D M, CLAXTON B L, HENK F, et al. Oil and shale gas from the Barnett shale, Ft. Worth Basin, Texas[C]//AAPG National Convention. Denver: AAPG, 2001.
    [15]
    SIMA Liqiang, WU Feng, MA Jianhai, et al. Quantitative calculation of GOR of complex oil-gas-water systems with logging data: a case study of the Yingdong Oil/Gas Field in the Qaidam Basin[J]. Natural Gas Industry B, 2014, 1(2): 172-177.
    [16]
    YANG Tao, ARIEF I H, NIEMANN M, et al. Reservoir fluid data acquisition using advanced mud logging gas in shale reservoirs[C]//Unconventional Resources Technology Conference. Denver: Society of Exploration Geophysicists, 2019.
    [17]
    TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin Heidelberg: Spinger-Verlag, 1984: 518.
    [18]
    LI Maowen, CHEN Zhuoheng, MA Xiaoxiao, et al. Shale oil resource potential and oil mobility characteristics of the Eocene-Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China[J]. International Journal of Coal Geology, 2019, 204: 130-143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (429) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return