Volume 45 Issue 3
May  2023
Turn off MathJax
Article Contents
LI Yingtao, RU Zhixing, DENG Shang, LIN Huixi, HAN Jun, ZHANG Jibiao, HUANG Cheng. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422
Citation: LI Yingtao, RU Zhixing, DENG Shang, LIN Huixi, HAN Jun, ZHANG Jibiao, HUANG Cheng. Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(3): 422-433. doi: 10.11781/sysydz202303422

Experimental evaluation and hydrocarbon significance of natural fractures in Shunbei ultra-deep carbonate reservoir, Tarim Basin

doi: 10.11781/sysydz202303422
  • Received Date: 2022-10-22
  • Rev Recd Date: 2023-04-12
  • Publish Date: 2023-05-28
  • There are abundant hydrocarbon resources in the strike-slip fault-controlled ultra-deep carbonate reservoirs in the Shunbei area, Tarim Basin. Large strike-slip faults and natural fractures are the main storage space and flow channel of hydrocarbon resources. It is of great significance to study the natural fracture development characteristics in such reservoirs. 39 limestone samples and 7 dolomite samples from 5 wells in Shunbei area are taken as research objects. Through the analysis of thin section of lithofacies, fine description of natural fractures and brittleness test evaluation of core samples, the main controlling factors and influence laws of natural fracture development in Shunbei reservoir are studied. It is found that the reservoir lithology of Middle and Lower Ordovician Yingshan Formation and Yijianfang Formation in Shunbei area is dolomite and limestone, and the lithofacies include grainstone, wackestone, packstone, boundstone, muddy limestone, silicified limestone, silty-fine crystal dolomite and medium-coarse crystal dolomite. In limestone samples, muddy limestone has the highest brittleness index and natural fracture development density, while boundstone has the lowest brittleness index and natural fracture development density. In dolomite samples, the brittleness index of medium-coarse crystalline dolomite is higher than that of silty-fine crystal dolomite, and the coarser the grains are, the more developed the natural fractures are. There is a positive correlation between the natural fracture development density and the brittleness index of rock samples. The porosity, permeability and brittleness index of dolomite are higher than those of limestone. Under the same brittleness index, the fracture development ability of limestone is stronger. Therefore, the highly brittle section of limestone stratum is more likely to be the geological sweet spot in Shunbei area.

     

  • loading
  • [1]
    赵文智, 沈安江, 乔占峰, 等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探, 2022, 27(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204001.htm

    ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202204001.htm
    [2]
    何登发, 马永生, 刘波, 等. 中国含油气盆地深层勘探的主要进展与科学问题[J]. 地学前缘, 2019, 26(1): 1-12. doi: 10.13745/j.esf.sf.2019.1.20

    HE Dengfa, MA Yongsheng, LIU Bo, et al. Main advances and key issues for deep-seated exploration in petroliferous basins in China[J]. Earth Science Frontiers, 2019, 26(1): 1-12. doi: 10.13745/j.esf.sf.2019.1.20
    [3]
    马永生, 黎茂稳, 蔡勋育, 等. 海相深层油气富集机理与关键工程技术基础研究进展[J]. 石油实验地质, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737

    MA Yongsheng, LI Maowen, CAI Xunyu, et al. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies[J]. Petroleum Geology & Experiment, 2021, 43(5): 737-748. doi: 10.11781/sysydz202105737
    [4]
    李映涛, 漆立新, 张哨楠, 等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470-1484. doi: 10.7623/syxb201912006
    [5]
    LI Jian, ZHANG Wenzheng, LUO Xia, et al. Paleokarst reservoirs and gas accumulation in the Jingbian field, Ordos Basin[J]. Marine and Petroleum Geology, 2008, 25(4/5): 401-415. http://www.onacademic.com/detail/journal_1000035416832810_ddc6.html
    [6]
    XIE Peiyan, GAO Zhiqian, LI Congcong, et al. Conductivity of hydraulic fracturing in tight carbonate intra-platform shoal reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106976. doi: 10.1016/j.petrol.2020.106976
    [7]
    邓尚, 李慧莉, 张仲培, 等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm

    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
    [8]
    DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characte-rization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1): 109-137. doi: 10.1306/06071817354
    [9]
    唐磊, 王建峰, 曹敬华, 等. 塔里木盆地顺北地区超深断溶体油藏地质工程一体化模式探索[J]. 油气藏评价与开发, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htm

    TANG Lei, WANG Jianfeng, CAO Jinghua, et al. Geology-engineering integration mode of ultra-deep fault-karst reservoir in Shunbei area, Tarim Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 329-339. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103007.htm
    [10]
    郝运轻, 宋国奇, 周广清, 等. 济阳坳陷古近系泥页岩岩石学特征对可压性的影响[J]. 石油实验地质, 2016, 38(4): 489-495. doi: 10.11781/sysydz201604489

    HAO Yunqing, SONG Guoqi, ZHOU Guangqing, et al. Influence of petrological characteristics on fracability of the Paleogene shale, Jiyang Depression[J]. Petroleum Geology & Experiment, 2016, 38(4): 489-495. doi: 10.11781/sysydz201604489
    [11]
    RU Zhixing, HU Jinghong, MADNI A S, et al. A study on the optimal conditions for formation of complex fracture networks in fractured reservoirs[J]. Journal of Structural Geology, 2020, 135: 104039. http://www.sciencedirect.com/science/article/pii/S0191814119304754
    [12]
    GALE J F W, HOLDER J. Natural fractures in some US shales and their importance for gas production[J]. Geological Society, London, Petroleum Geology Conference Series, 2010, 7(1): 1131-1140. http://www.onacademic.com/detail/journal_1000037795569110_2c08.html
    [13]
    DASHTI R, RAHIMPOUR-BONAB H, ZEINALI M. Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs: a case study from Zagros region[J]. Marine and Petroleum Geology, 2018, 97: 466-479. http://www.onacademic.com/detail/journal_1000040432893210_ae7d.html
    [14]
    孙彪, 刘小平, 舒红林, 等. 湖相泥页岩储层脆性评价及影响因素分析: 以苏北盆地海安凹陷曲塘次凹泥页岩为例[J]. 石油实验地质, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006

    SUN Biao, LIU Xiaoping, SHU Honglin, et al. Evaluation and influencing factors for brittleness of lacustrine shale reservoir a case study of Qutang Sub-Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 1006-1014. doi: 10.11781/sysydz2021061006
    [15]
    焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm

    JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
    [16]
    云露. 顺北地区奥陶系超深断溶体油气成藏条件[J]. 新疆石油地质, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm

    YUN Lu. Hydrocarbon accumulation of ultra-deep ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm
    [17]
    马永生, 何治亮, 赵培荣, 等. 深层—超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm

    MA Yongsheng, HE Zhiliang, ZHAO Peirong, et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica, 2019, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm
    [18]
    QIU Huabiao, DENG Shang, CAO Zicheng, et al. The evolution of the complex anticlinal belt with crosscutting strike-slip faults in the central Tarim Basin, NW China[J]. Tectonics, 2019, 38(6): 2087-2113. doi: 10.1029/2018TC005229
    [19]
    吕海涛, 韩俊, 张继标, 等. 塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J]. 石油实验地质, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014

    Haitao, HAN Jun, ZHANG Jibiao, et al. Development characte-ristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2021, 43(1): 14-22. doi: 10.11781/sysydz202101014
    [20]
    谢润成. 川西坳陷须家河组探井地应力解释与井壁稳定性评价[D]. 成都: 成都理工大学, 2009.

    XIE Runcheng. Stress interpretation and wellbore stability evaluation of Xujiahe formation of exploration wells in Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2009.
    [21]
    汝智星. 特低渗透油藏注水过程中天然裂缝与水力裂缝耦合作用研究[D]. 北京: 中国地质大学(北京), 2018.

    RU Zhixing. Study on coupling effects of natural fractures and hydraulic fractures in water injection process in ultra-low permeability reservoirs[D]. Beijing: China University of Geosciences (Beijing), 2018.
    [22]
    RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. Denver: Society of Petroleum Engineers, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (330) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return