Volume 45 Issue 4
Jul.  2023
Turn off MathJax
Article Contents
FAN Jianping, SONG Jinmin, LIU Shugen, JIANG Qingchun, LI Zhiwu, YANG Di, JIN Xin, SU Wang, YE Yuehao, HUANG Shipeng, WANG Jiarui, JIANG Hua, LUO Ping. Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 726-738. doi: 10.11781/sysydz202304726
Citation: FAN Jianping, SONG Jinmin, LIU Shugen, JIANG Qingchun, LI Zhiwu, YANG Di, JIN Xin, SU Wang, YE Yuehao, HUANG Shipeng, WANG Jiarui, JIANG Hua, LUO Ping. Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(4): 726-738. doi: 10.11781/sysydz202304726

Paleotemperature evolution and its driving mechanism during the formation of limestone-marl alternations in first member of Middle Permian Maokou Formation in Sichuan Basin

doi: 10.11781/sysydz202304726
  • Received Date: 2022-12-03
  • Rev Recd Date: 2023-04-29
  • Publish Date: 2023-07-28
  • From the Late Carboniferous to the end of Middle Permian, the most intense glacial event in history of Phanerozoic occurred and it is also the last transition period from icehouse stage to greenhouse stage in geological history. In this paper, the paleotemperature and paleoclimate in the first member of the Middle Permian Maokou Formation (Mao-1) were restored by means of thin section identification, scanning electron microscope, major elements, trace elements, carbon isotopes, oxygen isotopes and strontium isotopes, and the major climate evolution process and its driving mechanism in the Middle Permian were discussed. The results show that the biological assemblage type (mainly composed of foraminifera, brachiopods and molluscs, without reef-building organisms or calcareous green algae) and rock structure characteristics (supported by bioclastic and plaster, without oolitic or other non-skeletal particles) of the limestone-marl alternations in the Mao-1 member are similar to those of the international typical cool-water carbonate. During the limestone sedimentary period, the paleotemperature of seawater was 3.72 to 12.38 ℃ (8.15 ℃ in average, δ18O standard) or 13.79 to 14.28 ℃ (13.90 ℃ in average, ω(Mg)/ ω(Ca) standard), while during the marl sedimentary period, the paleotemperature of seawater was 7.00 to 14.24 ℃ (10.97 ℃ in average, δ18O standard) and 13.82 to 15.41 ℃ (14.27 ℃ in average, ω(Mg)/ω(Ca) standard). The paleotemperature changes in the sedimentary period of Mao-1 Member was mainly driven by the short eccentricity cycle of Milankovitch. The cyclical change of the short eccentricity was the driving mechanism of paleotemperature and paleoclimate cycle changes.

     

  • All authors disclose no relevant conflict of interests.
    The study was designed by FAN Jianping, SONG Jinmin, LIU Shugen and LUO Ping. The experimental operation was completed by FAN Jianping, JIN Xin and WANG Jiarui. The manuscript was drafted and revised by FAN Jianping, SONG Jinmin, LIU Shugen, JIANG Qingchun, LI Zhiwu, YANG Di, SU Wang, YE Yuehao, HUANG Shipeng and JIANG Hua. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    NELSON C S, JAMES N P. Marine cements in mid-Tertiary cool-water shelf limestones of New Zealand and southern Australia[J]. Sedimentology, 2000, 47(3): 609-629. doi: 10.1046/j.1365-3091.2000.00314.x
    [2]
    MARTÍN J M, BRAGA J C, BETZLER C, et al. Sedimentary model and high-frequency cyclicity in a Mediterranean, shallow-shelf, temperate-carbonate environment(uppermost Miocene, Agua Amarga Basin, southern Spain)[J]. Sedimentology, 1996, 43(2): 263-277. doi: 10.1046/j.1365-3091.1996.d01-4.x
    [3]
    DRAPER J J. Permian limestone in the southeastern Bowen Basin, Queensland: an example of temperate carbonate deposition[J]. Sedimentary Geology, 1988, 60(1/4): 155-162.
    [4]
    LAVOIE D. A Late Ordovician high-energy temperate-water carbonate ramp, southern Quebec, Canada: implications for Late Ordovician oceanography[J]. Sedimentology, 1995, 42(1): 95-116. doi: 10.1111/j.1365-3091.1995.tb01273.x
    [5]
    JAMES N P, BONE Y. Pleistocene aeolianites at Cape Spencer, South Australia; Record of a vanished inner neritic cool-water carbonate factory[J]. Sedimentology, 2015, 62(7): 2038-2059. doi: 10.1111/sed.12216
    [6]
    FRANK T D. Diagenetic pathways in heterozoan carbonates[C]//AAPG 2016 Annual Convention and Exhibition. Calgary, Alberta, Canada: AAPG, 2016.
    [7]
    贾承造, 张杰, 沈安江, 等. 非暖水碳酸盐岩: 沉积学进展与油气勘探新领域[J]. 石油学报, 2017, 38(3): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703001.htm

    JIA Chengzao, ZHANG Jie, SHEN Anjiang, et al. Non-tropical carbonate: progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201703001.htm
    [8]
    PUGLIANO T M, GOLDSTEIN R H, FRANSEEN E K. Fundamental controls on modeling reservoir properties of fining-updip heterozoan carbonates[C]//AAPG 2016 Annual Convention and Exhibition. Calgary, Alberta, Canada: AAPG, 2016.
    [9]
    PARRISH J T, SOREGHAN G S. Sedimentary geology and the future of paleoclimate studies[J]. The Sedimentary Record, 2013, 11(2): 4-10. doi: 10.2110/sedred.2013.2.4
    [10]
    KLAGES J P, SALZMANN U, BICKERT T, et al. Temperate rainforests near the South Pole during peak Cretaceous warmth[J]. Nature, 2020, 580(7801): 81-86. doi: 10.1038/s41586-020-2148-5
    [11]
    ISBELL J L, HENRY L C, GULBRANSON E L, et al. Glacial paradoxes during the Late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation[J]. Gondwana Research, 2012, 22(1): 1-19. doi: 10.1016/j.gr.2011.11.005
    [12]
    FRANK T D, JAMES N P, SHULTIS A I. Lack of synsedimentary chemical alteration in polar carbonates(Ross Sea, Antarctica): resolution of a conundrum[J]. Journal of Sedimentary Research, 2020, 90(5): 449-467. doi: 10.2110/jsr.2020.26
    [13]
    WANG Wenqian, GARBELLI C, ZHANG Feifei, et al. A high-resolution Middle to Late Permian paleotemperature curve reconstructed using oxygen isotopes of well-preserved brachiopod shell[J]. Earth and Planetary Science Letters, 2020, 540: 116245 doi: 10.1016/j.epsl.2020.116245
    [14]
    KANI T, HISANABE C, ISOZAKI Y. The Capitanian (Permian) minimum of 87Sr/86Sr ratio in the mid-Panthalassan paleo-atoll carbonates and its demise by the deglaciation and continental doming[J]. Gondwana Research, 2013, 24(1): 212-221. doi: 10.1016/j.gr.2012.08.025
    [15]
    FIELDING C R, FRANK T D, ISBELL J L. The Late Paleozoic ice age: a review of current understanding and synthesis of global climate patterns[M]//FIELDING C R, FRANK T D, ISBELL J L. Resolving the Late Paleozoic ice age in time and space. Geological Society of America, 2008: 343-354.
    [16]
    HAIG D W, MORY A J, MCCARTAIN E, et al. Late Artinskian-Early Kungurian(Early Permian)warming and maximum marine flooding in the east Gondwana interior rift, Timor and western Australia, and comparisons across east Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 88-121. doi: 10.1016/j.palaeo.2016.11.051
    [17]
    SCOTESE C R. Atlas of Middle & Late Permian and Triassic paleogeographic maps, maps 43-52 from volumes 3 & 4 of the paleomap atlas for ArcGIS, Mollweide Projection. Paleomap Project, Evanston, 2014.
    [18]
    冯增昭, 杨玉卿, 金振奎, 等. 中国南方二叠纪岩相古地理[J]. 沉积学报, 1996, 14(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htm

    FENG Zengzhao, YANG Yuqing, JIN Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedi-mentologica Sinica, 1996, 14(2): 3-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB602.000.htm
    [19]
    SHEN Shuzhong, WANG Yue, HENDERSON C M, et al. Bio-stratigraphy and lithofacies of the Permian system in the Laibin-Heshan area of Guangxi, South China[J]. Palaeoworld, 2007, 16(1/3): 120-139.
    [20]
    沈树忠, 张华, 张以春, 等. 中国二叠纪综合地层和时间框架[J]. 中国科学: 地球科学, 2019, 49(1): 160-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htm

    SHEN Shuzhong, ZHANG Hua, ZHANG Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China Earth Sciences, 2019, 62(1): 154-188. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901009.htm
    [21]
    SU Chengpeng, LI Fei, TAN Xiucheng, et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: a case study from Permian of South China[J]. Marine and Petroleum Geology, 2020, 111: 765-785. doi: 10.1016/j.marpetgeo.2019.08.033
    [22]
    李大军, 陈辉, 陈洪德, 等. 四川盆地中二叠统茅口组储层形成与古构造演化关系[J]. 石油与天然气地质, 2016, 37(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605016.htm

    LI Dajun, CHEN Hui, CHEN Hongde, et al. Relationship between reservoir development in the Middle Permian Maokou Formation and paleostructure evolution in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(5): 756-763. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605016.htm
    [23]
    范建平, 宋金民, 江青春, 等. 川东地区中二叠统茅口组一段储层特征与形成模式[J]. 石油与天然气地质, 2022, 43(6): 1413-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202206011.htm

    FAN Jianping, SONG Jinmin, JIANG Qingchun, et al. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6): 1413-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202206011.htm
    [24]
    韩月卿, 李双建, 韩文彪, 等. 川东南地区中二叠统茅口组灰泥灰岩储层孔隙特征[J]. 石油实验地质, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666

    HAN Yueqing, LI Shuangjian, HAN Wenbiao, et al. Pore characteristics of marl reservoir in Maokou Formation of Middle Permian, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 666-676. doi: 10.11781/sysydz202204666
    [25]
    LEI Han, HUANG Wenhui, JIANG Qingchun, et al. Genesis of clay minerals and its insight for the formation of limestone marl alterations in Middle Permian of the Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2022, 218: 111014. doi: 10.1016/j.petrol.2022.111014
    [26]
    DERRY L A, KAUFMAN A J, JACOBSEN S B. Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1317-1329. doi: 10.1016/0016-7037(92)90064-P
    [27]
    QING Hairuo, VEIZER J. Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(20): 4429-4442. doi: 10.1016/0016-7037(94)90345-X
    [28]
    KORTE C, JASPER T, KOZUR H W, et al. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 224(4): 333-351. doi: 10.1016/j.palaeo.2005.03.015
    [29]
    RAO C P. Geochemical differences between tropical (Ordovician) and subpolar (Permian) carbonates, Tasmania, Australia[J]. Geo-logy, 1981, 9(5): 205-209.
    [30]
    KADIR S, EREN M, I·KEÇ T, et al. An approach to genesis of sepiolite and palygorskite in lacustrine sediments of the Lower Pliocene Sakarya and Porsuk formations in the Sivrihisar and Yunusemre-Biçer regions(Eskişehir), Turkey[J]. Clays and Clay Minerals, 2017, 65(5/6): 310-328.
    [31]
    WEI Gangjian, LIU Ying, LI Xianhua, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 33-342.
    [32]
    ALGEO T J, MAYNARD J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [33]
    DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. doi: 10.1029/92PA00181
    [34]
    MURRAY RW, KNOWLTON C, LEINEN M, et al. Export production and terrigenous matter in the Central Equatorial Pacific Ocean during interglacial oxygen isotope stage 11[J]. Global and Planetary Change, 2000, 24(1): 59-78. doi: 10.1016/S0921-8181(99)00066-1
    [35]
    MUSASHI M, ISOZAKI Y, KAWAHATA H. An Early-Middle Guadalupian (Permian) isotopic record from a mid-oceanic carbonate buildup: Akiyoshi limestone, Japan[J]. Global and Planetary Change, 2010, 73(1/2): 114-122.
    [36]
    KORTE C, JASPER T, KOZUR H W, et al. 87Sr/86Sr record of Permian seawater[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1/2): 89-107.
    [37]
    ISOZAKI Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276(5310): 235-238.
    [38]
    HASTINGS D W, RUSSELL A D, EMERSON S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161-169.
    [39]
    邵龙义, 窦建伟, 张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学, 1996, 25(6): 575-581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.006.htm

    SHAO Longyi, DOU Jianwei, ZHANG Pengfei. Paleogeographic significances of carbon andoxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica, 1996, 25(6): 575-581. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX606.006.htm
    [40]
    GIVEN R K, LOHMANN K C. Isotopic evidence for the early meteoric diagenesis of the reef facies, Permian reef complex of west Texas and New Mexico[J]. Journal of Sedimentary Research, 1986, 56(2): 183-193.
    [41]
    CHEN Bo, JOACHIMSKI M M, SHEN Shuzhong, et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89.
    [42]
    CHEN Bo, JOACHIMSKI M M, WANGXiaodong, et al. Ice volume and paleoclimate history of the Late Paleozoic ice age from conodont apatite oxygen isotopes from Naqing(Guizhou, China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161.
    [43]
    LÉCUYER C, AMIOT R, TOUZEAU A, et al. Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations[J]. Chemical Geology, 2013, 347: 217-226.
    [44]
    HAYS P D, GROSSMAN E L. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate[J]. Geology, 1991, 19(5): 441-444.
    [45]
    FOSTR G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
    [46]
    BAGHERPOUR B, BUCHER H, SCHNEEBELI-HERMANN E, et al. Early Late Permian coupled carbon and strontium isotope chemostratigraphy from South China: extended Emeishan volcanism?[J]. Gondwana Research, 2018, 58: 58-70.
    [47]
    FALAHATKHAH O, KORDI M, FATEMI V, et al. Recognition of Milankovitch cycles during the Oligocene-Early Miocene in the Zagros Basin, SW Iran: implications for paleoclimate and sequence stratigraphy[J]. Sedimentary Geology, 2021, 421: 105957.
    [48]
    FANG Qiang, WU Huaichun, HINNOV L A, et al. Astronomical cycles of Middle Permian Maokou Formation in South China and their implications for sequence stratigraphy and paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 474: 130-139.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (432) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return