Volume 45 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
WAN Chengxiang, GUO Xusheng, SHEN Baojian, CHANG Jiaqi, XUE Zixin, DU Wei. Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204
Citation: WAN Chengxiang, GUO Xusheng, SHEN Baojian, CHANG Jiaqi, XUE Zixin, DU Wei. Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(6): 1204-1214. doi: 10.11781/sysydz2023061204

Pore structure and free gas transport characteristics of deep shale: taking Longmaxi Formation shale in Sichuan Basin as an example

doi: 10.11781/sysydz2023061204
  • Received Date: 2023-08-31
  • Rev Recd Date: 2023-10-27
  • Publish Date: 2023-11-28
  • Deep shale gas is an important research direction for increasing shale gas storage and production in the Longmaxi Formation of Sichuan Basin. But there are differences in reservoir and seepage characteristics between shallow and medium-buried shale gas, which to some extent limits the progress of exploration and development of deep shale gas. In order to clarify the pore structure characteristics of deep shale gas reservoirs and the transport characteristics of shale free gas, this paper takes the high-quality shale of Longmaxi Formation in southern Sichuan as an example to carry out experiments on observing and quantitatively characterizing the pore structure of shale reservoirs. In addition, based on the transport mechanism of bulk gas, the transport characteristics, critical conditions, and dynamic evolution laws of shale free gas were explored. The experimental and computational results indicate that: (1) The pore morphology characteristics of deep shale reservoirs are not significantly different from those of shallow and medium-buried shale, but the pore structure characteristics of medium pores are more obvious, with pore volume accounting for 62.5%-69.7%; (2) The transport modes of deep shale free gas are divided into three types: transitional flow, slippage flow, and Darcy flow. The critical pore sizes of the three modes in the Yongchuan area are 4.2 nm and 420 nm, respectively. On this basis, a transport chart for free gas in the entire basin has been established; (3) From shallow to deep shale, the critical pore size corresponding to different transport modes of free gas decreases accordingly. The main transport mode of free gas changes from the transitional flow (up to 63.0%) to the slippage flow (up to 67.3%) and the Darcy flow accounts for no more than 2%. The transport capacity of free gas rapidly decreases from shallow to medium-buried shale, while the transport capacity of medium to deep shale free gas remains basically stable with increasing burial depth. By analyzing and comparing the pore structure characteristics and free gas transport characteristics of deep and shallow shale reservoirs, this study can effectively support the deployment of efficient exploration and development plans for deep shale gas and even shallow shale gas in the next step.

     

  • loading
  • [1]
    郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm

    GUO Xusheng, HU Dongfeng, LI Yuping, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
    [2]
    郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htm

    GUO Xusheng, BORJIGIN Tenger, WEI Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202204001.htm
    [3]
    姜振学, 梁志凯, 申颍浩, 等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 2023, 48(1): 110-129.

    JIANG Zhenxue, LIANG Zhikai, SHEN Yinghao, et al. Coupling key factors of shale gas sweet spot and research direction of geology-engineering integration in southern Sichuan[J]. Earth Science, 48(1): 110-129.
    [4]
    苏海琨, 聂海宽, 郭少斌, 等. 深层页岩含气量评价及其差异变化: 以四川盆地威荣、永川页岩气田为例[J]. 石油实验地质, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815

    SU Haikun, NIE Haikuan, GUO Shaobin, et al. Shale gas content evaluation for deep strata and its variation: a case study of Weirong, Yongchuan gas fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 815-824. doi: 10.11781/sysydz202205815
    [5]
    王鹏万, 焦鹏飞, 贺训云, 等. 昭通示范区太阳—海坝浅层页岩气富集模式[J]. 中国石油大学学报(自然科学版), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm

    WANG Pengwan, JIAO Pengfei, HE Xunyun, et al. Shallow shale gas enrichment model of Taiyang-Haiba in Zhaotong demonstration area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(3): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202303005.htm
    [6]
    国家能源局. 2022年全国油气勘探开发十大标志性成果[EB/OL]. (2023-01-20). http://www.nea.gov.cn/2023-01/20/c_1310692197.htm.

    National Energy Administration. Top 10 iconic achievements in national oil and gas exploration and development in 2022[EB/OL]. (2023-01-20). http://www.nea.gov.cn/2023-01/20/c_1310692197.htm.
    [7]
    邹才能, 赵群, 王红岩, 等. 中国海相页岩气主要特征及勘探开发主体理论与技术[J]. 天然气工业, 2022, 42(8): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htm

    ZOU Caineng, ZHAO Qun, WANG Hongyan, et al. The main characteristics of marine shale gas and the theory & technology of exploration and development in China[J]. Natural Gas Industry, 2022, 42(8): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208001.htm
    [8]
    李倩文, 唐令, 庞雄奇. 页岩气赋存动态演化模式及含气性定量评价[J]. 地质论评, 2020, 66(2): 457-466. doi: 10.16509/j.georeview.2020.02.014

    LI Qianwen, TANG Ling, PANG Xiongqi. Dynamic evolution model of shale gas occurrence and quantitative evaluation of gas-bearing capacity[J]. Geological Review, 2020, 66(2): 457-466. doi: 10.16509/j.georeview.2020.02.014
    [9]
    吴克柳, 陈掌星. 页岩气纳米孔气体传输综述[J]. 石油科学通报, 2016, 1(1): 91-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601008.htm

    WU Keliu, CHEN Zhangxing. Review of gas transport in nano-pores in shale gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(1): 91-127. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201601008.htm
    [10]
    王濡岳, 胡宗全, 龙胜祥, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩储层特征与演化机制[J]. 石油与天然气地质, 2022, 43(2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202009.htm

    WANG Ruyue, HU Zongquan, LONG Shengxiang, et al. Reservoir characteristics and evolution mechanisms of the Upper Ordovician Wufeng-Lower Silurian Longmaxi shale, Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(2): 353-364. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202202009.htm
    [11]
    王国臻, 姜振学, 唐相路, 等. 四川盆地焦石坝地区龙马溪组页岩气不同传输类型的临界孔径与传输能力[J]. 地质学报, 2023, 97(1): 210-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202301014.htm

    WANG Guozhen, JIANG Zhenxue, TANG Xianglu, et al. Critical conditions and capabilities of shale gas diffusion and seepage types in the Longmaxi Formation in Jiaoshiba area, Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(1): 210-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202301014.htm
    [12]
    吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507008.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201507008.htm
    [13]
    KLINKENBERG L J. The permeability of porous media to liquids and gases[M]//Drilling and Production Practice. New York: American Petroleum Institute, 1941.
    [14]
    袁竟舟, 叶玥豪, 徐昉昊, 等. 渝西—川南地区五峰组—龙马溪组深层页岩气储层岩相及孔隙特征[J]. 矿物岩石, 2022, 42(4): 104-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202204010.htm

    YUAN Jingzhou, YE Yuehao, XU Fanghao, et al. Lithofacies and pore characteristics of Wufeng-Longmaxi deep buried shale gas reservoirs in west Chongqing-south Sichuan area, China[J]. Mineralogy and Petrology, 2022, 42(4): 104-115. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202204010.htm
    [15]
    王濡岳, 胡宗全, 包汉勇, 等. 四川盆地上奥陶统五峰组—下志留统龙马溪组页岩关键矿物成岩演化及其控储作用[J]. 石油实验地质, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996

    WANG Ruyue, HU Zongquan, BAO Hanyong, et al. Diagenetic evolution of key minerals and its controls on reservoir quality of Upper Ordovician Wufeng-Lower Silurian Longmaxi shale of Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 996-1005. doi: 10.11781/sysydz202106996
    [16]
    刘伟新, 卢龙飞, 魏志红, 等. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 2020, 42(3): 378-386.

    LIU Weixin, LU Longfei, WEI Zhihong, et al. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geo-logy & Experiment, 220, 42(3): 378-386.
    [17]
    王羿文. 泸州区块深层五峰—龙马溪组页岩储层特征[D]. 徐州: 中国矿业大学, 2022.

    WANG Yiwen. Deep shale reservoir characteristics of Wufeng-Longmaxi formation in Luzhou block[D]. Xuzhou: China University of Mining and Technology, 2022.
    [18]
    魏富彬, 刘珠江, 陈斐然, 等. 川东南五峰组—龙马溪组深层、超深层页岩储层特征及其页岩气勘探意义[J]. 石油实验地质, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751

    WEI Fubin, LIU Zhujiang, CHEN Feiran, et al. Characteristics of the deep and ultra-deep shale reservoirs of the Wufeng-Longmaxi formations in the southeastern Sichuan Basin and the significance of shale gas exploration[J]. Petroleum Geology & Experiment, 2023, 45(4): 751-760. doi: 10.11781/sysydz202304751
    [19]
    石学文, 吴伟, 胡海燕, 等. 泸州地区深层五峰—龙马溪组页岩气储层全孔径表征及其主控因素[J]. 地球科学, 2023, 48(1): 158-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301011.htm

    SHI Xuewen, WU Wei, HU Haiyan, et al. The whole apertures of deeply buried Wufeng-Longmaxi formation shale and their controlling factors in Luzhou district, Sichuan Basin[J]. Earth Science, 2023, 48(1): 158-172. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301011.htm
    [20]
    ZHANG Kun, JIANG Zhenxue, XIE Xuelian, et al. Lateral percolation and its effect on shale gas accumulation on the basis of complex tectonic background[J]. Geofluids, 2018, 2018: 5195469.
    [21]
    冯动军, 胡宗全, 李双建, 等. 川东盆缘带龙马溪组关键保存要素对页岩气富集的控制作用[J]. 地质论评, 2021, 67(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101015.htm

    FENG Dongjun, HU Zongquan, LI Shuangjian, et al. Controlling effect of key preservation elements on shale gas enrichment in Longmaxi Formation, eastern marginal zone of Sichuan Basin[J]. Geological Review, 2021, 67(1): 144-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202101015.htm
    [22]
    王玉满, 黄金亮, 王淑芳, 等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016, 27(3): 423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm

    WANG Yuman, HUANG Jinliang, WANG Shufang, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3): 423-432. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201603006.htm
    [23]
    FIROUZI M, ALNOAIMI K, KOVSCEK A, et al. Klinkenberg effect on predicting and measuring helium permeability in gas shales[J]. International Journal of Coal Geology, 2014, 123: 62-68.
    [24]
    MUKHERJEE M, VISHAL V. Gas transport in shale: a critical review of experimental studies on shale permeability at a mesoscopic scale[J]. Earth-Science Reviews, 2023, 244: 104522.
    [25]
    李亚雄, 刘先贵, 胡志明, 等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 114702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201711022.htm

    LI Yaxiong, LIU Xiangui, HU Zhiming, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physica Sinica, 2017, 66(11): 114702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201711022.htm
    [26]
    WU Keliu, LI Xiangfang, WANG Chenchen, et al. Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorption[C]//Proceedings of SPE/AAPG/SEG Unconventional Resources Technology Conference. Denver, 2014.
    [27]
    曹海涛, 詹国卫, 余小群, 等. 深层页岩气井产能的主要影响因素: 以四川盆地南部永川区块为例[J]. 天然气工业, 2019, 39(S1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm

    CAO Haitao, ZHAN Guowei, YU Xiaoqun, et al. Main influencing factors on the productivity of deep shale gas wells: taking the Yongchuan block in the southern Sichuan Basin as an example[J]. Natural Gas Industry, 2019, 39(S1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm
    [28]
    郭彤楼, 熊亮, 雷炜, 等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm

    GUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, south Sichuan Basin: progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202208005.htm
    [29]
    倪楷, 王明筏, 李响. 四川盆地东南缘页岩气富集模式: 以丁山地区上奥陶统五峰组—下志留统龙马溪组页岩为例[J]. 石油实验地质, 2021, 43(4): 580-588. doi: 10.11781/sysydz202104580

    NI Kai, WANG Mingfa, LI Xiang. Enrichment model of shale gas in southeastern Sichuan Basin: a case study of Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in Dingshan area[J]. Petroleum Geology & Experiment, 2021, 43(4): 580-588. doi: 10.11781/sysydz202104580
    [30]
    魏祥峰, 刘珠江, 王强, 等. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm

    WEI Xiangfeng, LIU Zhujiang, WANG Qiang, et al. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm
    [31]
    董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm

    DONG Dazhong, GAO Shikui, HUANG Jinliang, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412001.htm
    [32]
    董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm

    DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm
    [33]
    吴克柳, 李相方, 陈掌星. 页岩气有机质纳米孔气体传输微尺度效应[J]. 天然气工业, 2016, 36(11): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing. Micro-scale effects of gas transport in organic nanopores of shale gas reservoirs[J]. Natural Gas Industry, 2016, 36(11): 51-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201611012.htm
    [34]
    吴克柳, 李相方, 陈掌星. 页岩纳米孔吸附气表面扩散机理和数学模型[J]. 中国科学: 技术科学, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm

    WU Keliu, LI Xiangfang, CHEN Zhangxing, et al. The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs[J]. Scientia Sinica Technologica, 2015, 45(5): 525-540. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201505012.htm
    [35]
    胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm

    HU Dongfeng, ZHANG Hanrong, NI Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406003.htm
    [36]
    魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147

    WEI Xiangfeng, LI Yuping, WEI Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153. doi: 10.11781/sysydz201702147
    [37]
    袁玉松, 方志雄, 何希鹏, 等. 彭水及邻区龙马溪组页岩气常压形成机制[J]. 油气藏评价与开发, 2020, 10(1): 9-16, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm

    YUAN Yusong, FANG Zhixiong, HE Xipeng, et al. Normal pressure formation mechanism of Longmaxi shale gas in Pengshui and its adjacent areas[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(1): 9-16, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202001003.htm
    [38]
    魏祥峰, 赵正宝, 王庆波, 等. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价[J]. 地质论评, 2017, 63(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701018.htm

    WEI Xiangfeng, ZHAO Zhengbao, WANG Qingbo, et al. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation—Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, southeastern Sichuan[J]. Geological Review, 2017, 63(1): 153-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701018.htm
    [39]
    胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm

    HU Dongfeng. Main controlling factors on normal pressure shale gas enrichments in Wufeng-Longmaxi formations in synclines, southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(5): 605-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201905001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (147) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return