Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
CHEN Shaoyun, YANG Yongqiang, QIU Longwei, WANG Xiaojuan, YANG Baoliang, Erejep HABILAXIM. Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202
Citation: CHEN Shaoyun, YANG Yongqiang, QIU Longwei, WANG Xiaojuan, YANG Baoliang, Erejep HABILAXIM. Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 202-214. doi: 10.11781/sysydz202401202

Pore throat structure analysis and permeability prediction method of tight sandstone: a case study of Jurassic Shaximiao Formation in central Sichuan Basin

doi: 10.11781/sysydz202401202
  • Received Date: 2023-07-28
  • Rev Recd Date: 2023-12-01
  • Publish Date: 2024-01-28
  • Subtle characterization of pore throat structure and permeability prediction of tight sandstone reservoir are the key for quality reservoir evaluation and development. Taking Jurassic Shaximiao Formation in central Sichuan Basin as an example, the pore throat structure is statically characterized by HPMI and fractal theory. The relations among pore throat structure, fractal dimension and reservoir physical property are discussed, the contribution of pore throat structure to permeability is analyzed, and a permeability prediction model is established. The samples of Shaximiao Formation can be divided into four types: type Ⅰ samples have low displacement pressure, favorable physical properties and good pore connectivity; the average fractal dimension is 2.11, the pores are mainly macropores and mesopores with radius >0.1 μm, and the pore throat with radius >1 μm contributes more than 90% of the permeability. As for type Ⅱ samples, the displacement pressure are 0.4-1.0 MPa, the average porosity and permeability are 9.72% and 0.375×10-3 μm2, respectively, and the fractal dimension is 2.20; the mesopore content increases and mesopores contribute most of the permeability. The displacement pressure and fractal dimension of type Ⅲ and Ⅳ samples are significantly higher than those of type Ⅰ and Ⅱ samples, and the low porosity and lack of macropore lead to low permeability. The macropores and mesopores with radius > 0.1 μm contribute more than 98% of the permeability of Shaximiao Formation. Fractal dimension is a good indicator of pore throat structure. Fractal dimension is significantly negatively correlated with pore throat radius, maximum mercury saturation and permeability, and is positively correlated with displacement pressure and relative separation coefficient of pore throat. There is a strong correlation between fractal dimension and pore throat composition, and a permeability quantitative prediction model based on fractal dimension, porosity and maximum pore throat radius is established.

     

  • All authors disclose no relevant conflict of interests.
    CHEN Shaoyun, YANG Yongqiang and QIU Longwei carried out the tasks of formulating research ideas and analyzing data. WANG Xiaojuan provided some of the raw data of the study area, pointed out the connection between the actual problems of the study area and the content of the study. YANG Baoliang and Erejep HABILAXIM organized part of the data and participated in the drawing of pictures. CHEN Shaoyun and YANG Yongqiang participated in writing and revising the paper. All the authors have read the last version of paper and consented for submission.
  • loading
  • [1]
    邹才能, 翟光明, 张光亚, 等. 全球常规—非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25.

    ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
    [2]
    李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001

    LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001
    [3]
    赵永强, 宋振响, 王斌, 等. 准噶尔盆地油气资源潜力与中国石化常规—非常规油气一体化勘探策略[J]. 石油实验地质, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872

    ZHAO Yongqiang, SONG Zhenxiang, WANG Bin, et al. Resource potential in Junggar Basin and SINOPEC's integrated exploration strategy for conventional and unconventional petro-leum[J]. Petroleum Geology & Experiment, 2023, 45(5): 872-881. doi: 10.11781/sysydz202305872
    [4]
    徐君, 杨春, 孟朋飞. 吐哈探区非常规油气资源开发策略[J]. 新疆石油地质, 2023, 44(3): 314-320.

    XU Jun, YANG Chun, MENG Pengfei. Development strategies for unconventional oil and gas resources in Turpan-Hami exploration area[J]. Xinjiang Petroloeum Geology, 2023, 44(3): 314-320.
    [5]
    张仲培, 张宇, 张明利, 等. 准噶尔盆地中部凹陷区二叠系—三叠系油气成藏主控因素与勘探方向[J]. 石油实验地质, 2022, 44(4): 559-568. doi: 10.11781/sysydz202204559

    ZHANG Zhongpei, ZHANG Yu, ZHANG Mingli, et al. Main control-ling factors and exploration direction of Permian to Triassic reservoir in the central sag of Junggar Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 559-568. doi: 10.11781/sysydz202204559
    [6]
    郝牧歌, 张金功, 马士磊. 从常规与非常规油气成藏的正相关性角度预测有利区: 以孤岛1号凹隆域低部位为例[J]. 油气地质与采收率, 2022, 29(4): 46-56.

    HAO Muge, ZHANG Jingong, MA Shilei, et al. Favorable area prediction from perspective of positive accumulation correlation between conventional and unconventional oil and gas reservoirs: a case of low part in Gudao No. 1 sag-uplift band[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 46-56.
    [7]
    徐旭辉, 周卓明, 宋振响, 等. 油气资源评价方法关键参数研究和资源分布特征: 以中国石化探区"十三五"资源评价为例[J]. 石油实验地质, 2023, 45(5): 832-843. doi: 10.11781/sysydz202305832

    XU Xuhui, ZHOU Zhuoming, SONG Zhenxiang, et al. Methods and key parameters for oil and gas resource assessment and distribution characteristics of oil and gas resource: a case study of resource assessment of SINOPEC during the 13th Five-Year Plan period[J]. Petroleum Geology & Experiment, 2023, 45(5): 832-843. doi: 10.11781/sysydz202305832
    [8]
    程建, 周小进, 刘超英, 等. 中西部大盆地重点勘探领域战略选区研究[J]. 石油实验地质, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229

    CHENG Jian, ZHOU Xiaojin, LIU Chaoying, et al. Strategic area selection and key exploration fields in central and western large basins[J]. Petroleum Geology & Experiment, 2023, 45(2): 229-237. doi: 10.11781/sysydz202302229
    [9]
    徐延勇, 申建, 张兵, 等. 鄂尔多斯盆地中东部上古生界致密气成藏条件差异性分析[J]. 断块油气田, 2022, 29(5): 577-583.

    XU Yanyong, SHEN Jian, ZHANG Bing, et al. Analysis on differences of tight gas accumulation conditions of Upper Paleozoic in central and eastern Ordos Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 577-583.
    [10]
    刘俊田, 谢佃和, 彭亚中, 等. 胜北构造带致密气成藏机理及富集规律[J]. 特种油气藏, 2022, 29(5): 18-27.

    LIU Juntian, XIE Dianhe, PENG Yazhong, et al. Accumulation mechanism and enrichment law of tight gas in Shengbei Structural Zone[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 18-27.
    [11]
    孙龙德, 邹才能, 贾爱林, 等. 中国致密油气发展特征与方向[J]. 石油勘探与开发, 2019, 46(6): 1015-1026.

    SUN Longde, ZOU Caineng, JIA Ailin, et al. Development characte-ristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
    [12]
    YANG Wenze, HOU Jiagen, LIU Yuming, et al. The pore structures of different lithofacies in low-permeability sandy conglomerate reservoirs and their diagenetic impacts: a case study from the Es4 member of the northern steep slope in Dongying Depression, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2022, 136: 105481. doi: 10.1016/j.marpetgeo.2021.105481
    [13]
    王南, 裴玲, 雷丹凤, 等. 中国非常规天然气资源分布及开发现状[J]. 油气地质与采收率, 2015, 22(1): 26-31. doi: 10.3969/j.issn.1009-9603.2015.01.005

    WANG Nan, PEI Ling, LEI Danfeng, et al. Analysis of unconventional gas resources distribution and development status in China[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(1): 26-31. doi: 10.3969/j.issn.1009-9603.2015.01.005
    [14]
    杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1): 12-24.

    YANG Yueming, WANG Xiaojuan, CHEN Shuangling, et al. Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 12-24.
    [15]
    黄东, 李育聪, 刘敏, 等. 川中地区中侏罗统沙溪庙组一段油气藏特征及勘探潜力评价[J]. 中国石油勘探, 2017, 22(2): 44-49. doi: 10.3969/j.issn.1672-7703.2017.02.005

    HUANG Dong, LI Yucong, LIU Min, et al. Reservoir features and exploration potential of the 1st member of Shaximiao Formation of Middle Jurassic in central Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(2): 44-49. doi: 10.3969/j.issn.1672-7703.2017.02.005
    [16]
    肖富森, 韦腾强, 王小娟, 等. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.

    XIAO Fusen, WEI Tengqiang, WANG Xiaojuan, et al. Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(9): 1216-1224.
    [17]
    唐大海, 谭秀成, 涂罗乐, 等. 川中—川西过渡带沙溪庙组第二段致密砂岩储层物性控制因素及孔隙演化[J]. 成都理工大学学报(自然科学版), 2020, 47(4): 460-471. doi: 10.3969/j.issn.1671-9727.2020.04.08

    TANG Dahai, TAN Xiucheng, TU Luole, et al. Control factors and pore evolution of tight sandstone reservoir of the second member of Shaximiao Formation in the transition zone between central and western Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(4): 460-471. doi: 10.3969/j.issn.1671-9727.2020.04.08
    [18]
    韦腾强, 张本健, 王小娟, 等. 四川盆地秋林地区侏罗系沙溪庙组二段河流相沉积特征及储集差异性分析[J]. 科学技术与工程, 2021, 21(29): 12438-12446. doi: 10.3969/j.issn.1671-1815.2021.29.012

    WEI Tengqiang, ZHANG Benjian, WANG Xiaojuan, et al. Sedimentary characteristics of fluvial facies and analysis of reservoir differences in the second member of Jurassic Shaximiao Formation in Qiulin area, Sichuan Basin[J]. Science Technology and Engineering, 2021, 21(29): 12438-12446. doi: 10.3969/j.issn.1671-1815.2021.29.012
    [19]
    吴浩, 张春林, 纪友亮, 等. 致密砂岩孔喉大小表征及对储层物性的控制: 以鄂尔多斯盆地陇东地区延长组为例[J]. 石油学报, 2017, 38(8): 876-887.

    WU Hao, ZHANG Chunlin, JI Youliang, et al. Pore-throat size characterization of tight sandstone and its control on reservoir physical properties: a case study of Yanchang Formation, eastern Gansu, Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(8): 876-887.
    [20]
    XI Kelai, CAO Yingchang, HAILE B G, et al. How does the pore-throat size control the reservoir quality and oiliness of tight sandstones?The case of the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2016, 76: 1-15. doi: 10.1016/j.marpetgeo.2016.05.001
    [21]
    白斌, 朱如凯, 吴松涛, 等. 非常规油气致密储层微观孔喉结构表征新技术及意义[J]. 中国石油勘探, 2014, 19(3): 78-86. doi: 10.3969/j.issn.1672-7703.2014.03.010

    BAI Bin, ZHU Rukai, WU Songtao, et al. New micro-throat structural characterization techniques for unconventional tight hydrocarbon reservoir[J]. China Petroleum Exploration, 2014, 19(3): 78-86. doi: 10.3969/j.issn.1672-7703.2014.03.010
    [22]
    LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457. doi: 10.1016/j.earscirev.2017.12.003
    [23]
    LI Zhen, WU Shenghe, XIA Dongling, et al. An investigation into pore structure and petrophysical property in tight sandstones: a case of the Yanchang Formation in the southern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 97: 390-406. doi: 10.1016/j.marpetgeo.2018.07.014
    [24]
    NABAWY B S, GÉRAUD Y, ROCHETTE P, et al. Pore-throat characterization in highly porous and permeable sandstones[J]. AAPG Bulletin, 2009, 93(6): 719-739.
    [25]
    窦文超, 刘洛夫, 吴康军, 等. 基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响: 以鄂尔多斯盆地西南部三叠系延长组长7储层为例[J]. 地质论评, 2016, 62(2): 502-512.

    DOU Wenchao, LIU Luofu, WU Kangjun, et al. Pore structure characteristics and its effect on permeability by mercury injection measurement: an example from Triassic Chang-7 reservoir, southwest Ordos Basin[J]. Geological Review, 2016, 62(2): 502-512.
    [26]
    LI Peng, ZHENG Min, BI He, et al. Pore throat structure and fractal characteristics of tight oil sandstone: a case study in the Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 665-674.
    [27]
    LAI Jin, WANG Guiwen. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 185-196.
    [28]
    GUO Ruiling, XIE Qichao, QU Xuefeng, et al. Fractal characteristics of pore-throat structure and permeability estimation of tight sandstone reservoirs: a case study of Chang 7 of the Upper Triassic Yanchang Formation in Longdong area, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106555.
    [29]
    HU Yunbing, GUO Yinghai, SHANGGUAN Jingwen, et al. Fractal characteristics and model applicability for pores in tight gas sandstone reservoirs: a case study of the Upper Paleozoic in Ordos Basin[J]. Energy & Fuels, 2020, 34(12): 16059-16072.
    [30]
    王伟, 陈朝兵, 许爽, 等. 鄂尔多斯盆地延长组致密砂岩不同尺度孔喉分形特征及其控制因素[J]. 石油实验地质, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033

    WANG Wei, CHEN Chaobing, XU Shuang, et al. Fractal characteristics and its controlling factors of pore-throat with different scales in tight sandstones of the Yanchang Formation in the Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 33-40. doi: 10.11781/sysydz202201033
    [31]
    李大勇, 臧士宾, 任晓娟, 等. 用分形理论研究低渗储层孔隙结构[J]. 辽宁化工, 2010, 39(7): 723-726.

    LI Dayong, ZANG Shibin, REN Xiaojuan, et al. Study on pore structure of low permeability reservoirs with fractal theory[J]. Liaoning Chemical Industry, 2010, 39(7): 723-726.
    [32]
    张全培, 王海红, 刘美荣, 等. 超低渗透储层全孔径分布及其分形特征研究[J]. 中国矿业大学学报, 2020, 49(6): 1137-1149.

    ZHANG Quanpei, WANG Haihong, LIU Meirong, et al. Study of the full pore size distribution and fractal characteristics of ultra-low permeability reservoir[J]. Journal of China University of Mining & Technology, 2020, 49(6): 1137-1149.
    [33]
    王学军, 杨志如, 韩冰. 四川盆地叠合演化与油气聚集[J]. 地学前缘, 2015, 22(3): 161-173.

    WANG Xuejun, YANG Zhiru, HAN Bing. Superposed evolution of Sichuan Basin and its petroleum accumulation[J]. Earth Science Frontiers, 2015, 22(3): 161-173.
    [34]
    刘树根, 李智武, 孙玮, 等. 四川含油气叠合盆地基本特征[J]. 地质科学, 2011, 46(1): 233-257.

    LIU Shugen, LI Zhiwu, SUN Wei, et al. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(1): 233-257.
    [35]
    郝毅, 倪超, 陈薇, 等. 川中中侏罗统凉高山组—下沙溪庙组储层特征[J]. 四川地质学报, 2013, 33(2): 154-157.

    HAO Yi, NI Chao, CHEN Wei, et al. Reservoir characteristics and control factors of the Middle Jurassic Lianggaoshan and Lower Shaximiao Formations in central Sichuan[J]. Acta Geologica Sichuan, 2013, 33(2): 154-157.
    [36]
    刘占国, 陈娅娜, 倪超, 等. 川中地区中—下侏罗统砂岩储层特征[J]. 西南石油大学学报(自然科学版), 2010, 32(2): 35-40.

    LIU Zhanguo, CHEN Yana, NI Chao, et al. Characteristics of sandstone reservoirs of Middle-Lower Jurassic in central Sichuan area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(2): 35-40.
    [37]
    杨跃明, 杨家静, 杨光, 等. 四川盆地中部地区侏罗系致密油研究新进展[J]. 石油勘探与开发, 2016, 43(6): 873-882.

    YANG Yueming, YANG Jiajing, YANG Guang, et al. New research progress of Jurassic tight oil in central Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(6): 873-882.
    [38]
    LI Kewen. Analytical derivation of Brooks–Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity[J]. Journal of Petroleum Science and Engineering, 2010, 73(1/2): 20-26.
    [39]
    冯阵东, 周永, 吴伟, 等. 非均质砂岩储层压汞分形特征与储层评价[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 25-34.

    FENG Zhendong, ZHOU Yong, WU Wei, et al. Mercury injection fractal characteristics and reservoir evaluation of heterogeneous sandstone reservoirs[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(6): 25-34.
    [40]
    WU Jun, FAN Tailiang, GOMEZ-RIVAS E, et al. Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 557-579.
    [41]
    邓浩阳, 司马立强, 吴玟, 等. 致密砂岩储层孔隙结构分形研究与渗透率计算: 以川西坳陷蓬莱镇组沙溪庙组储层为例[J]. 岩性油气藏, 2018, 30(6): 76-82.

    DENG Haoyang, SIMA Liqiang, WU Wen, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs: a case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression[J]. Lithologic Reservoirs, 2018, 30(6): 76-82.
    [42]
    ZHANG Luchuan, LU Shuangfang, XIAO Dianshi, et al. Pore structure characteristics of tight sandstones in the northern Songliao Basin, China[J]. Marine and petroleum geology, 2017, 88: 170-180.
    [43]
    XIAO Liang, LIU Die, WANG Hua, et al. The applicability analysis of models for permeability prediction using mercury injection capillary pressure (MICP) data[J]. Journal of Petroleum Science and Engineering, 2017, 156: 589-593.
    [44]
    GUO Boyun, GHALAMBOR A, DUAN Shengkai. Correlation between sandstone permeability and capillary pressure curves[J]. Journal of Petroleum Science and Engineering, 2004, 43(3/4): 239-246.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (145) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return