Please wait a minute...
石油实验地质  2017, Vol. 39 Issue (3): 341-347    DOI: 10.11781/sysydz201703341
盆地·油藏 本期目录 | 过刊浏览 |
蛋白石硅质页岩成岩过程中的孔隙结构变化特征
陈红宇1,2, 卢龙飞1,2, 刘伟新1,2, 申宝剑1,2, 俞凌杰1,2, 仰云峰1,2
1. 中国石化 油气成藏重点实验室, 江苏 无锡 214126;
2. 中国石化 石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126
Pore network changes in opaline siliceous shale during diagenesis
Chen Hongyu1,2, Lu Longfei1,2, Liu Weixin1,2, Shen Baojian1,2, Yu Linjie1,2, Yang Yunfeng1,2
1. SINOPEC Key Laboratory of Hydrocarbon Accumulation, Wuxi, Jiangsu 214126, China;
2. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China
全文:  PDF(965 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 为研究硅质页岩成岩演化过程中的孔隙结构变化,选取松辽盆地嫩江组低演化蛋白石硅质页岩和渝东南高演化五峰-龙马溪组样品,在X射线衍射分析基础上,采用氮气等温吸附技术,开展了成岩作用过程中蛋白石硅质页岩的孔隙结构变化特征研究。结果显示较低演化的蛋白石硅质页岩比表面积和孔容均远高于较高演化的蛋白石硅质页岩,低演化页岩2 nm以上孔隙主要集中在2~3 nm区间,其次分布在20~30 nm区间,2 nm以下孔隙主要集中在0.6~0.8 nm区间,总孔容主要由10~30 nm区间孔隙贡献;高演化页岩2 nm以上孔隙主要集中在2~3 nm区间,2 nm以下孔隙主要集中在0.6~1 nm区间,总孔容主要由2~30 nm区间孔隙贡献。将五峰-龙马溪组硅质页岩与其相比,发现纳米孔隙在成岩过程中大幅丧失,孔容缩小至原始的1/3~1/10。五峰-龙马溪组硅质页岩中2~30 nm区间的孔隙对孔容的贡献最大,30~200 nm范围内孔隙有微小贡献,2 nm以下的孔隙在成岩演化过程中几乎消失殆尽,显示出成岩作用对不同孔径孔隙的改造程度存在差异性。
关键词 孔隙结构成岩作用蛋白石硅质页岩储集层特征    
Abstract:The siliceous shale of the Nenjiang Formation in the Songliao Basin and the Wufeng-Longmaxi formations in the Sichuan Basin were analyzed using X-ray diffraction and N2 isothermal adsorption to study pore network changes during diagenetic evolution. The specific surface area and pore volume of shale with a low evolution degree are much higher than those with a high evolution degree. Pores larger than 2 nm in lower evolved shale mainly concentrated in 2-3 nm and 20-30 nm, while those smaller than 2 nm mainly concentrated in 0.6-0.8 nm, and their pore volume is mainly contributed by 10-30 nm. Pores larger than 2 nm in higher evolved shale mainly concentrated in 2-3 nm, while those smaller than 2 nm mainly concentrated in 0.6-1 nm, and their pore volume is mainly contributed by 2-30 nm. Compared with siliceous shale in the Wufeng-Longmachi formations, nano pores were greatly reduced during diagenesis, and pore volume reduced to 1/3-1/10 of the original. Pores of 2-30 nm are the major contributor to pore volume in the Wufeng-Longmaxi formations, and the next is 30-200 nm, and pores smaller than 2 nm almost disappeared, which indicated that the influence of diagenesis on various size pores is different.
Key wordspore structure    diagenesis    opal    siliceous shale    reservoir feature
收稿日期: 2016-12-21     
ZTFLH:  TE122.23  
基金资助:国家科技重大专项项目(2016ZX05049-006-08HZ)资助。
作者简介: 陈红宇(1962-),工程师,从事岩石物性与孔隙结构测试分析工作。E-mail:chenhy.syky@sinopec.com。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仰云峰
陈红宇
卢龙飞
刘伟新
申宝剑
俞凌杰
引用本文:

陈红宇, 卢龙飞, 刘伟新, 申宝剑, 俞凌杰, 仰云峰. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质, 2017, 39(3): 341-347.
Chen Hongyu, Lu Longfei, Liu Weixin, Shen Baojian, Yu Linjie, Yang Yunfeng. Pore network changes in opaline siliceous shale during diagenesis. PETROLEUM GEOLOGY & EXPERIMENT, 2017, 39(3): 341-347.

链接本文:

http://www.sysydz.net/CN/10.11781/sysydz201703341      或      http://www.sysydz.net/CN/Y2017/V39/I3/341

[1] 梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J].海相油气地质,2008,13(2):1-16. Liang Digang,Guo Tonglou,Chen Jianping,et al.Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions,Southern China (part 1):Distribution of four suits of regional marine source rocks[J].Marine Origin Petroleum Geology,2008,13(2):1-16.
[2] 梁狄刚,郭彤楼,边立曾,等.中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质,2009,14(2):1-19. Liang Digang,Guo Tonglou,Bian Lizeng,et al.Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 3):Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J].Marine Origin Petroleum Geology,2009,14(2):1-19.
[3] 马永生.中国海相油气勘探[M].北京:地质出版社,2007:147-201. Ma Yongsheng.Marine petroleum exploration in China[M].Beijing:Geological Press,2007:147-201.
[4] 秦建中.中国烃源岩[M].北京:科学出版社,2005:85-192. Qin Jianzhong.Hydrocarbon source rocks of China[M].Beijing:Science Press,2005:85-192.
[5] 秦建中,陶国亮,腾格尔,等.南方海相优质页岩的成烃生物研究[J].石油实验地质,2010,32(3):262-269. Qin Jianzhong,Tao Guoliang,Tenger,et al.Hydrocarbon-forming organisms in excellent marine source rocks in South China[J].Petroleum Geology & Experiment,2010,32(3):262-269.
[6] 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16. Guo Xusheng,Li Yuping,Liu Ruobing,et al.Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Indu-stry,2014,34(6):9-16.
[7] 魏志红,魏祥峰.页岩不同类型孔隙的含气性差异:以四川盆地焦石坝地区五峰组-龙马溪组为例[J].天然气工业,2014,34(6):37-41. Wei Zhihong,Wei Xiangfeng.Comparison of gas-bearing property between different pore types of shale:A case from the Upper Ordovician Wufeng and Longmaxi Formation in the Jiaoshiba area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):37-41.
[8] 郭旭升,胡东风,文治东,等.四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例[J].中国地质,2014,41(3):893-901. Guo Xusheng,Hu Dongfeng,Wen Zhidong,et al.Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery:A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J].Geology in China,2014,41(3):893-901.
[9] 刘江涛,刘双莲,李永杰,等.焦石坝地区奥陶系五峰组-志留系龙马溪组页岩地球化学特征及地质意义[J].油气地质与采收率,2016,23(3):53-57. Liu Jiangtao,Liu Shuanglian,Li Yongjie,et al.Geochemistry characteri-stics and its geological significance of shale in the Ordovician Wufeng Formation and Silurian Longmaxi Formation,Jiaoshiba area[J].Petroleum Geology and Recovery Efficiency,2016,23(3):53-57.
[10] 高红贤,王雪玲,严伟,等.页岩气层有效厚度下限探讨:以涪陵页岩气田五峰组-龙马溪组为例[J].断块油气田,2016,23(4):434-437. Gao Hongxian,Wang Xueling,Yan Wei,et al.Lower limit of effective thickness of shale gas:a case from Wufeng and Longmaxi Formations in Fuling shale gas field[J].Fault-Block Oil and Gas Field,2016,23(4):434-437.
[11] Lee D S,Herman J D,Elsworth D.A critical evaluation of unconventional gas recovery from the Marcellus shale,Northeastern United States[J].KSCE Journal of Civil Engineering,2011,15(4):679-687.
[12] 秦建中,申宝剑,付小东,等.中国南方海相优质烃源岩超显微有机岩石学与生排烃潜力[J].石油与天然气地质,2010,31(6):826-837. Qin Jianzhong,Shen Baojian,Fu Xiaodong,et al.Ultramicroscopic organic petrology and potential of hydrocarbon generation and expulsion of quality marine source rocks in South China[J].Oil & Gas Geology,2010,31(6):826-837.
[13] 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报,2014,50(3):476-486. Wang Shufang,Zou Caineng,Dong Dazhong,et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium universitatis Pekinensis,2014,50(3):476-486.
[14] 陆益祥,潘仁芳,唐小玲,等.四川盆地威远地区龙马溪组页岩储层上下亚段脆性差异[J].断块油气田,2016,23(4):429-433. Lu Yixiang,Pan Renfang,Tang Xiaoling,et al.Brittleness comparison between upper and lower sub-sections of Longmaxi Formation shale reservoir in Weiyuan area,Sichuan Basin[J].Fault-Block Oil and Gas Field,2016,23(4):429-433.
[15] 潘涛,姜歌,孙王辉.四川盆地威远地区龙马溪组泥页岩储层非均质性[J].断块油气田,2016,23(4):423-428. Pan Tao,Jiang Ge,Sun Wanghui.Shale reservoir heterogeneity of Longmaxi Formation,Weiyuan area,Sichuan Basin[J].Fault-Block Oil and Gas Field,2016,23(4):423-428.
[16] 伍岳,樊太亮,蒋恕,等.四川盆地南缘上奥陶统五峰组-下志留统龙马溪组页岩矿物组成与脆性特征[J].油气地质与采收率,2015,22(4):59-63. Wu Yue,FanTailiang,JiangShu,etal.Mineralogy and brittleness features of the shale in the upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in southern Sichuan Basin[J].Petroleum Geology and Recovery Efficiency,2015,22(4):59-63.
[17] 卢龙飞,秦建中,申宝剑,等.川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J].石油实验地质,2016,38(4):460-465. Lu Longfei,Qin Jianzhong,Shen Baojian,et al.Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area,southeastern Sichuan Basin[J].Petroleum Geology & Experiment,2016,38(4):460-465.
[18] Adkins B D,Davis B H.Comparison of nitrogen adsorption and mercury penetration results.II:Pore size distributions calculated from Type IV isotherm data[J].Adsorption Science & Techno-logy,1988,5(3):168-190.
[19] Ross D J K,Bustin R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[20] Mastalerz M,Schimmelmann A,Drobniak A,et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J].AAPG Bulletin,2013,97(10):1621-1643.
[21] Dong T,Harris N B,Ayranci K,et al.Porosity characteristics of the Devonian Horn River shale,Canada:Insights from lithofacies classification and shale composition[J].International Journal of Coal Geology,2015,141/142:74-90.
[22] Worden R H,French M W,Mariani E.Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones[J].Geology,2012,40(2):179-182.
[23] Tsuji T,Masui Y,Yokoi S.New hydrocarbon trap models for the diagenetic transformation of opal-CT to quartz in Neogene siliceous rocks[J].AAPG Bulletin,2011,95(3):449-477.
[24] Rodgers K A,Browne P R L,Buddle T F,et al.Silica phases in sinters and residues from geothermal fields of New Zealand[J].Earth-Science Reviews,2004,66(1/2):1-61.
[25] Madsen H B,Stemmerik L,Surlyk F.Diagenesis of silica-rich mound-bedded chalk,the Coniacian Arnager Limestone,Denmark[J].Sedimentary Geology,2010,223(1/2):51-60.
[26] 刘素美,张经.沉积物中生物硅分析方法评述[J].海洋科学,2002,26(2):23-26. Liu Sumei,Zhang Jing.A study on the measurement of biogenic silica[J].Marine Sciences,2002,26(2):23-26.
[27] 叶曦雯,刘素美,张经.生物硅的测定及其生物地球化学意义[J].地球科学进展,2003,18(3):420-426. Ye Xiwen,Liu Sumei,Zhang Jing.The determination of biogenic silica and its biogeochemistry significance[J].Advance in Earth Sciences,2003,18(3):420-426.
[28] 李世雄,郭沛涌,候秀富.海洋沉积物中生物硅的分析技术研究进展[J].海洋环境科学,2013,32(1):152-156. Li Shixiong,Guo Peiyong,Hou Xiufu.Study progress on analytical method of biogenic silica in marine sediment[J].Marine Environmental Science,2013,32(1):152-156.
[29] Rouquerol F,Rouquerol J,Sing K.Adsorption by powders and porous solids:Principles,methodology and applications[M].Amsterdam:Elsevier,1999:467.
[30] Aringhieri R.Nanoporosity characteristics of some natural clay minerals and soils[J].Clays and Clay Minerals,2004,52(6):700-704.
[31] 近藤精一,石川达雄,安部郁夫.吸附科学[M].李国希,译.北京:化学工业出版社,2006. Kondo,Ishikawa D,An S F.Adsorption science[M].Li Guoxi,trans.Beijing:Chemical Industry Press,2006.
[32] 朱炎铭,王阳,陈尚斌,等.页岩储层孔隙结构多尺度定性-定量综合表征:以上扬子海相龙马溪组为例[J].地学前缘,2016,23(1):154-163. Zhu Yanming,Wang Yang,Chen Shangbin,et al.Qualitative-quantitative multiscale characterization of pore structures in shale reservoirs:A case study of Longmaxi Formation in the Upper Yangtze area[J].Earth Science Frontiers,2016,23(1):154-163.
[33] 姜振学,唐相路,李卓,等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘,2016,23(2):126-134. Jiang Zhenxue,Tang Xianglu,Li Zhuo,et al.The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23(2):126-134.
[34] Hurd D C.Physical and chemical properties of siliceous skeletons[C]//Aston S R.Silicon Geochemistry and Biogeochemistry.London:Academic Press,1983:187-244.
[35] Jarvie D M,Hill R J,Ruble T E,et al.Unconventional shale-gas systems:The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
[36] Hill R J,Jarvie D M,Zumberge J,et al.Oil and gas geochemistry and petroleum systems of the Fort Worth Basin[J]. AAPG Bulletin, 2007, 91(4):445-473.
[37] 张林晔,李政,朱日房.页岩气的形成与开发[J].天然气工业,2009, 29(1):124-128. Zhang Linye,Li Zhen,Zhu Rifang.The formation and exploitation of shale gas[J].Natural gas industry,2009,29(1):124-128.
[1] 杨文新, 李继庆, 赵江艳, 黄志红. 四川盆地涪陵地区龙马溪组页岩微观孔隙结构定性定量研究[J]. 石油实验地质, 2018, 40(1): 97-102.
[2] 张福顺, 张旺. 塔里木盆地三顺地区志留系储层孔隙类型与控制因素[J]. 石油实验地质, 2017, 39(6): 770-775.
[3] 马尚伟, 罗静兰, 陈春勇, 何贤英, 代静静, 许学龙, 汪冲. 火山岩储层微观孔隙结构分类评价——以准噶尔盆地东部西泉地区石炭系火山岩为例[J]. 石油实验地质, 2017, 39(5): 647-654.
[4] 宋磊, 宁正福, 孙一丹, 丁冠阳, 杜华明. 联合压汞法表征致密油储层孔隙结构[J]. 石油实验地质, 2017, 39(5): 700-705.
[5] 马英俊. 苏北盆地金湖凹陷阜二段砂岩物性影响因素分析[J]. 石油实验地质, 2017, 39(4): 477-483.
[6] 王付斌, 尹伟, 陈纯芳. 鄂尔多斯盆地红河油田长8油层组致密砂岩储层“甜点”成因机制[J]. 石油实验地质, 2017, 39(4): 484-490.
[7] 卢晨刚, 张遂安, 毛潇潇, 赵迪斐. 致密砂岩微观孔隙非均质性定量表征及储层意义——以鄂尔多斯盆地X地区山西组为例[J]. 石油实验地质, 2017, 39(4): 556-561.
[8] 刘长利, 刘欣, 张莉娜, 陈贞龙, 李吉君, 王伟明, 马锋. 碎屑岩成岩作用及其对储层的影响——以鄂尔多斯盆地镇泾地区为例[J]. 石油实验地质, 2017, 39(3): 348-354.
[9] 赵习, 刘波, 郭荣涛, 张单明, 李扬, 田泽普. 储层表征技术及应用进展[J]. 石油实验地质, 2017, 39(2): 287-294.
[10] 张浩, 陈刚, 朱玉双, 党永潮, 陈娟, 王恒力, 斯扬, 白超, 李雪. 致密油储层微观孔隙结构定量表征——以鄂尔多斯盆地新安边油田长7储层为例[J]. 石油实验地质, 2017, 39(1): 112-119.
[11] 张茜, 孙卫, 杨晓菁, 李浩. 致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响——以鄂尔多斯盆地华庆地区长63储层为例[J]. 石油实验地质, 2017, 39(1): 126-133.
[12] 操应长, 姜伟, 王艳忠, 金杰华, 徐涛, 葸克来, 陈林. 准噶尔盆地西缘车排子地区侏罗系储层特征及控制因素[J]. 石油实验地质, 2016, 38(5): 609-618.
[13] 刘伟新, 鲍芳, 俞凌杰, 张文涛, 张庆珍, 卢龙飞, 范明. 川东南志留系龙马溪组页岩储层微孔隙结构及连通性研究[J]. 石油实验地质, 2016, 38(4): 453-459.
[14] 卢龙飞, 秦建中, 申宝剑, 腾格尔, 刘伟新, 张庆珍. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016, 38(4): 460-465.
[15] 时保宏, 黄静, 陈柳, 杨帆, 吕剑文. 鄂尔多斯盆地晚三叠世湖盆中部延长组长7储层致密化因素分析[J]. 石油实验地质, 2016, 38(4): 528-535.