Please wait a minute...
石油实验地质  2018, Vol. 40 Issue (1): 78-89    DOI: 10.11781/sysydz201801078
页岩气勘探开发 本期目录 | 过刊浏览 |
四川盆地焦石坝地区五峰-龙马溪组页岩元素地球化学特征及对页岩气开发的意义
甘玉青, 王超, 方栋梁, 杨兰芳, 周新科, 张萍
中国石化 江汉油田分公司 勘探开发研究院, 武汉 430223
Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to shale gas development
GAN Yuqing, WANG Chao, FANG Dongliang, YANG Lanfang, ZHOU Xinke, ZHANG Ping
Research Institute of Petroleum Exploration and Development, SINOPEC Jianghan Oilfield Company, Wuhan, Hubei 430223, China
全文:  PDF(1358 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 选择四川盆地焦石坝地区JYA、JYD两口井的85块页岩岩心样品,进行了有机碳和主、微量元素测试分析。通过分析主、微量元素在剖面上的纵向变化特征,对焦石坝地区五峰组-龙马溪组含气页岩的氧化还原条件和古生产力状况进行了研究,讨论了五峰组-龙马溪组有机质富集的主控因素;探讨了地球化学元素对页岩可压性的影响和含气性的指示。研究区五峰组-龙马溪组下部优质气层段有机质含量高,平均值为3.07%。与含气页岩段相比,优质气层段页岩中的SiO2和CaO含量较高,Mo、Cr、V、Ni、Th和U等氧化还原敏感元素富集。V/Cr、V/Sc、U/Th和Ni/Co等氧化还原条件判别指标表明,五峰组沉积期以缺氧-贫氧环境为主,龙马溪组沉积期下部以缺氧环境为主,往上则主要为含氧环境。古生产力指标Ba(xs)指示五峰组-龙马溪组页岩沉积期具有高等生产力背景。优质气层段有机碳含量与Mo/Al、U/Th、Ni/Co、V/Sc值之间存在明显的正相关,说明有机质富集主要受氧化还原条件控制。另外,优质气层段页岩生物成因的硅质含量高,且有机碳含量与SiO2含量呈正相关,有利于形成天然裂缝和后期人工压裂改造。优质气层段的地化元素比值明显高于含气页岩段,说明化学元素比值与页岩含气性之间存在一定的相关性。
关键词 主、微量元素有机质富集可压性含气性页岩五峰组-龙马溪组焦石坝地区    
Abstract:A total of 85 shale core samples from wells JYA and JYD in Jiaoshiba area of Sichuan Basin were selected to test their organic carbon contents, major and trace elements. The redox conditions and paleoproductivity of the gas-bearing shale in the Wufeng-Longmaxi formations in the Jiaoshiba area were studied by analyzing the vertical variation characteristics of the major and trace elements in the profile. Meanwhile, the controls for organic matter enrichment in the Wufeng-Longmaxi formations were explored. Moreover, the impact of geochemical elements on shale compressibi-lity and gas-bearing property were studied. The organic carbon content in the high gas-bearing interval from the Wufeng Formation to the lower part of Longmaxi Formation is high with an average value of 3.07%. Compared with the common gas-bearing shale, SiO2 and CaO contents are higher in the high gas-bearing shale, and redox-sensitive elements such as Mo, Cr, V, Ni, Th and U are enriched. The redox condition indicators such as V/Cr, V/Sc, U/Th and Ni/Co indicated that the Wufeng Formation was mostly deposited in suboxic to anoxic conditions, whereas the anoxic environment dominated during the early sedimentary stage of Longmaxi shale and evolved into aerobic conditions later on. The contents of biological productivity-related element Ba(xs) reflected a high paleoproductivity, whereas TOC content has an obvious positive correlation with redox proxies (Mo/Al, U/Th, Ni/Co and V/Sc) in the high gas-bearing interval, suggesting that the enrichment of organic matter was predominantly controlled by redox environment. In addition, the biogenic siliceous content of high-quality gas-bearing shale is high, and the organic carbon content is positively correlated with the SiO2 content, which is conducive to the formation of natural fractures and the later artificial fracturing. The ratio of geochemical elements in the high gas-bearing interval is significantly higher than that of common interval, indicating that there is a certain correlation between chemical element ratios and shale gas.
Key wordsmajor and trace elements    organic matter enrichment    compressibility    gas-bearing    shale    Wufeng-Longmaxi formations    Jiaoshiba area
收稿日期: 2017-10-13      出版日期: 2018-01-28
ZTFLH:  TE122.113  
基金资助:国家科技重大专项(2016ZX05060)和中国石化科技项目(P17014-3)资助。
作者简介: 甘玉青(1981-),女,硕士,工程师,从事油气藏地质评价工作。E-mail:iamagan@126.com。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘玉青
王超
方栋梁
杨兰芳
周新科
张萍
引用本文:

甘玉青, 王超, 方栋梁,等 .四川盆地焦石坝地区五峰-龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J].石油实验地质,2018,40(1):78-89.
GAN Yuqing, WANG Chao, FANG Dongliang,et al .Element geochemical characteristics of the Wufeng-Longmaxi shale in Jiaoshiba area, Sichuan Basin and their significance to shale gas development[J].Petroleum Geology & Experiment,2018,40(1):78-89.

链接本文:

http://www.sysydz.net/CN/10.11781/sysydz201801078      或      http://www.sysydz.net/CN/Y2018/V40/I1/78

[1] EQUEENUDDIN S M,TRIPATHY S,SAHOO P K,et al.Geochemical characteristics and mode of occurrence of trace elements in coal at West Bokaro coalfield[J].International Journal of Coal Science & Technology,2016,3(4):399-406.
[2] SINGH P K,RAJAK P K,SINGH M P,et al.Geochemistry of Kasnau-Matasukh lignites,Nagaur Basin,Rajasthan (India)[J].International Journal of Coal Science & Technology,2016,3(2):104-122.
[3] 胡润,陈义才,郑海桥,等.涪陵-重庆地区龙马溪组页岩地化特征及页岩气资源潜力评价[J].石油地质与工程,2016,29(5):33-37. HU Run,CHEN Yicai,ZHENG Haiqiao,et al.The shale geochemical characteristics and the potential evaluation of shale gas resources in Fuling area,Chongqing[J].Journal of Petroleum Geology and Engineering,2016,29(5):33-37.
[4] WEDEPOHL K H.Environmental influences on the chemical composition of shales and clays[M]//AHRENS L H,PRESS F,RUNCORN S K,et al.Physics and Chemistry of the Earth.Oxford:Pergamon,1971:305-333.
[5] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology,2006,232(1/2):12-32.
[6] TURGEON S,BRUMSACK H J.Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy[J].Chemical Geology,2006,234(3/4):321-339.
[7] WINGNALL P B.Black shales[M].Oxford:Clarendon Press,1994:45-89.
[8] JONES B,MANNING D A C.Comparison of geochemical indices used for the interpretation of depositional environments in ancient mudstones[J].Chemical Geology,1994,111:112-129.
[9] KIMURA H,WATANABE Y.Ocean anoxia at the Precambrian-Cambrian boundary[J].Geology,2001,29:995-998.
[10] WILKIN R T,ARTHUR M A,DEAN W E.History of water column anoxia in the Black Sea indicated by pyrite framboids size distributions[J].Earth and Planetary Science Letters,1997,148(3/4):517-525.
[11] 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48. ZHANG Shuichang,ZHANG Baomin,BIAN Lizeng,et al.Deve-lopment constraints of marine source rocks in China[J].Earth Science Frontiers,2005,12(3):39-48.
[12] 罗情勇,钟宁宁,朱雷,等.华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J].科学通报,2013,58(11):1036-1047. LUO Qingyong,ZHONG Ningning,ZHU Lei,et al.Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation,northern North China[J].Chinese Science Bulletin,2013,58(11):1299-1309.
[13] XIONG Zhifang,LI Tiegang,ALGEO T,et al.Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific[J].Chemical Geology,2012,334:77-91.
[14] 邱振,王清晨.来宾地区中晚二叠世之交烃源岩沉积的主控因素及大地构造背景[J].地质科学,2012,47(4):1085-1098. QIU Zhen,WANG Qingchen.Main factors controlling the deposition of the Middle-Upper Permian source rocks in Laibin area and its tectonic setting[J].Chinese Journal of Geology,2012,47(4):1085-1098.
[15] PI D H,LIU C Q,SHEILDS-ZHOU G A,et al.Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China;constraints for redox environments and origin of metal enrichments[J].Precambrian Research,2013,225:218-229.
[16] HOLLAND H D.The chemistry of the atmosphere and oceans[M].New York:Wiley-Interscience,1978:1117-1118.
[17] RIMMER S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales,Central Appalachian Basin(USA)[J].Chemical Geology,2004,206(3/4):289-318.
[18] 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组-龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483. LI Yanfang,SHAO Deyong,LV Haigang,et al.A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J].Acta Petroleum Sinica,2015,36(12):1470-1483.
[19] 李登华,李建忠,王社教,等.页岩气藏形成条件分析[J].天然气工业,2009,29(5):22-26. LI Denghua,LI Jianzhong,WANG Shejiao,et al.Analysis on the formation conditions of shale gas reservoir[J].Journal of Natural Gas Industry,2009,29(5):22-26.
[20] 王淑芳,邹才能,董大忠,等.四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J].北京大学学报(自然科学版),2014,50(3):476-486. WANG Shufang,ZOU Caineng,DONG Dazhong,et al.Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(3):476-486.
[21] BOWKER K. A.Recent development of the Barnett Shale play, Fort Worth Basin[J].West Texas Geological Society Bulletin,2003,42(6):4-11.
[22] 刘江涛,刘双莲,李永杰,等.焦石坝地区奥陶系五峰组-志留系龙马溪组页岩地球化学特征及地质意义[J].油气地质与采收率,2016,23(3):53-57. LIU Jiangtao,LIU Shuanglian,LI Yongjie,et al.Geochemistry characteristics and its geological significance of shale in the Ordovician Wufeng Formation and Silurian Longmaxi Formation,Jiaoshiba area[J].Petroleum Geology and Recovery Efficiency,2016,23(3):53-57.
[23] TAYLOR S R,MCLENNAN S M.The continental crust:Its composition and evolution,an examination of the Geochemical record preserved in sedimentary rocks[J].Journal of Geology,1985,94(4):632-633.
[24] BOSTRÖM K,KRAEMER T,GARTNER S.Provenance and accumulation rates of opaline silica,Al,Fe,Ti,Mn,Cu,Ni and Co in Pacific pelagic sediments[J].Chemical Geology,1973,11(2):123-148
[25] YAMAMOTO K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes[J].Sedimentary Geology,1987,52(1/2):65-108.
[26] ADACHI M,YAMAMOTO K,SUIGISKI R.Hydrothermal chert and associated siliceous rocks from the Northern Pacific:Their geological significance as indication of ocean ridge activity[J].Sedimentary Geology,1986,47:125-148.
[27] 田洋,赵小明,牛志军,等.鄂西南利川二叠纪吴家坪组硅质岩成因及沉积环境[J].沉积学报,2013,31(4):591-599. TIAN Yang,ZHAO Xiaoming,NIU Zhijun,et al.Petrogenesis and sedimentary environment of Permian Wujiaping Formation siliceous rocks in Lichuan,southwestern Hubei[J].Acta Sedi-mentologica Sinica,2013,31(4):591-599.
[28] WRIGHT A M,SPAIN D,RATCLIFFE K T.Application of inorganic whole rock geochemistry to shale resource plays[C]//Canadian Unconventional Resources & International Petroleum Conference,Calgary,Alberta,October 19-21,2010.SPE Paper 137946.
[29] 唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘,2012,19(5):356-363. TANG Ying,XING Yun,LI Lezhong,et al.Influence factors and evaluation methods of the gas shale fracability[J].Earth Science Frontiers,2012,19(5):356-363.
[1] 高辉, 何梦卿, 赵鹏云, 窦亮彬, 王琛. 鄂尔多斯盆地长7页岩油与北美地区典型页岩油地质特征对比[J]. 石油实验地质, 2018, 40(2): 133-140.
[2] 陈宇航, 朱增伍, 王喆, 黄薇, 李长春, 杨治国, 许锋, 李卫波. 鄂尔多斯盆地东南部长7油页岩时空分布及控制因素——来自沉积环境和沉积速率的制约[J]. 石油实验地质, 2018, 40(2): 200-209.
[3] 宋颖睿, 侯宇光, 刘宇坤, 何生, 范志伟, 梁雅琪. 黔南坳陷下石炭统摆佐组暗色页岩热演化与生烃史研究[J]. 石油实验地质, 2018, 40(2): 226-232.
[4] 杜学斌, 陆永潮, 刘惠民, 刘辉, 王勇, 熊仕鹏, 郭来源, 刘占红, 彭丽. 细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J]. 石油实验地质, 2018, 40(2): 244-252.
[5] 孙健, 包汉勇. 页岩气储层综合表征技术研究进展——以涪陵页岩气田为例[J]. 石油实验地质, 2018, 40(1): 1-12.
[6] 易积正, 王超. 四川盆地焦石坝地区龙马溪组海相页岩储层非均质性特征[J]. 石油实验地质, 2018, 40(1): 13-19.
[7] 胡德高, 刘超. 四川盆地涪陵页岩气田单井可压性地质因素研究[J]. 石油实验地质, 2018, 40(1): 20-24.
[8] 习传学, 孙冲, 方帆, 舒向伟, 汪庆, 张磊. 页岩含气量现场测试技术研究[J]. 石油实验地质, 2018, 40(1): 25-29.
[9] 张柏桥, 孟志勇, 刘莉, 李凯, 刘超, 舒志恒. 四川盆地涪陵地区五峰组观音桥段成因分析及其对页岩气开发的意义[J]. 石油实验地质, 2018, 40(1): 30-37.
[10] 舒志国, 关红梅, 喻璐, 柳筠. 四川盆地焦石坝地区页岩气储层孔隙参数测井评价方法[J]. 石油实验地质, 2018, 40(1): 38-43.
[11] 刘尧文, 王进, 张梦吟, 蔡进, 卢文涛, 沈童. 四川盆地涪陵地区五峰-龙马溪组页岩气层孔隙特征及对开发的启示[J]. 石油实验地质, 2018, 40(1): 44-50.
[12] 武加鹤, 陆亚秋, 刘颉, 梁榜, 王郁, 刘强. 四川盆地涪陵焦石坝地区五峰-龙马溪组低序级断层识别技术及应用效果[J]. 石油实验地质, 2018, 40(1): 51-57.
[13] 刘莉, 包汉勇, 李凯, 李根, 曾勇, 郑爱维, 熊红丽. 页岩储层含气性评价及影响因素分析——以涪陵页岩气田为例[J]. 石油实验地质, 2018, 40(1): 58-63.
[14] 张梦吟, 李争, 王进, 韩驰宇, 刘霜, 钱华. 四川盆地涪陵页岩气田五峰-龙马溪组岩矿纵向差异性研究——以JYA井为例[J]. 石油实验地质, 2018, 40(1): 64-70.
[15] 方帆, 孙冲, 舒向伟, 朱忠云, 方子和. 页岩中甲烷等温吸附量计算问题及方法改进[J]. 石油实验地质, 2018, 40(1): 71-77.