Please wait a minute...
石油实验地质  2019, Vol. 41 Issue (4): 593-597    DOI: 10.11781/sysydz201904593
方法·技术 本期目录 | 过刊浏览 |
孔隙度测定误差及其控制方法研究
鲍云杰1,2,3,4, 李志明1,2,3,4, 杨振恒1,2,3,4, 钱门辉1,2,3,4, 刘鹏1,2,3,4, 陶国亮1,2,3,4
1. 中国石化 石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126;
2. 中国石化 油气成藏重点实验室, 江苏 无锡 214126;
3. 页岩油气富集机理与有效开发国家重点实验室, 江苏 无锡 214126;
4. 国家能源页岩油研发中心, 江苏 无锡 214126
Porosity measurement error and its control method
BAO Yunjie1,2,3,4, LI Zhiming1,2,3,4, YANG Zhenheng1,2,3,4, QIAN Menhui1,2,3,4, LIU Peng1,2,3,4, TAO Guoliang1,2,3,4
1. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi, Jiangsu 214126, China;
2. SINOPEC Key Laboratory of Petroleum Accumulation Mechanisms, Wuxi, Jiangsu 214126, China;
3. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi, Jiangsu 214126, China;
4. State Energy Center for Shale Oil Research and Development, Wuxi, Jiangsu 214126, China
全文:  PDF(508 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 随着油气勘探领域的扩大,孔隙度测试样品的岩性及形态呈现多样化的发展趋势。在生产与科研实践中发现,相同的样品不同实验室孔隙度测定结果存在差异,给孔隙度资料的应用带来了困扰,孔隙度测定面临着新的挑战。从影响孔隙度测定结果的岩样总体积和骨架体积2个关键参数入手,分析了其测试误差对孔隙度测定结果的影响,发现测试相对误差为0.5%,1.0%,1.5%时,造成的孔隙度绝对误差分别为0.5,0.9,1.4,二者的测试误差对孔隙度测定精度的影响程度相近,应该予以有效控制;分析了岩样骨架体积和总体积测试误差控制现状,认为岩样骨架体积测试依托较为成熟的方法和装置,测试误差能够得到有效控制。总体积测试技术发展滞后,测定过程中关键参数获取受随机的人为因素影响,导致不同操作人员及不同实验室测定结果存在差异。探讨了有效控制孔隙度测定误差的方法,介绍了基于流体变密度测定原理的岩石样品总体积测定系统。该系统对样品的岩性和形态没有限制性要求,实现了岩样总体积测定的自动化;可以减少人为因素对测试的影响,岩样总体积测定平均相对误差0.5%,能够将孔隙度测定绝对误差控制在0.5左右,可用来缩小不同实验室测定结果差异。
关键词 岩样总体积孔隙度测定误差控制方法    
Abstract:With the expansion of oil and gas exploration, the lithology and morphology of porosity test samples show diverse development trends. Porosity measurement faces new challenges because the same sample may have different laboratory porosity measurement results, limiting the application of porosity data. Starting from two key parameters of the total volume and skeleton volume of the rock sample, the influence of test error on the porosity measurement results was analyzed. It is found that when the relative error of the test is 0.5%, 1.0% and 1.5%, the absolute error of porosity is 0.5, 0.9 and 1.4, respectively. The test error of the two has similar influence on the accuracy of porosity measurement, and should be effectively controlled. The current situation of error control of rock sample skeleton volume and total volume was analyzed. Volume testing relies on more mature methods and devices, and its test error can be effectively controlled. The development of total volume testing technology lags behind. The acquisition of key parameters in the measurement process is affected by random human factors, resulting in differences between different operators and different laboratory results. The method for effectively controlling porosity measurement error was discussed. A total sample volume measurement system for rock samples based on the fluid density determination principle was introduced, which has no restrictive requirements on the lithology and morphology of the sample, and automates the determination of the total volume of rock sample. The influence of human factors on the test can be reduced. The average relative error of the total volume of rock sample is 0.5%, and the absolute error of porosity measurement can be controlled to about 0.5, which can be used to narrow the difference of measurement results in different laboratories.
Key wordstotal volume of rock sample    porosity    measurement error    control method
收稿日期: 2019-01-04      出版日期: 2019-07-26
ZTFLH:  TE122.2  
基金资助:国家科技重大专项"大型油气田及煤层气开发:中国典型盆地陆相页岩油勘探开发选区与目标评价"(2017ZX05049001)资助。
作者简介: 鲍云杰(1963-),男,硕士,高级工程师,从事测试技术与页岩油气评价研究。E-mail:baoyj.syky@sinopec.com。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲍云杰
李志明
杨振恒
钱门辉
刘鹏
陶国亮
引用本文:

鲍云杰, 李志明, 杨振恒,等 .孔隙度测定误差及其控制方法研究[J].石油实验地质,2019,41(4):593-597.
BAO Yunjie, LI Zhiming, YANG Zhenheng,et al .Porosity measurement error and its control method[J].Petroleum Geology & Experiment,2019,41(4):593-597.

链接本文:

http://www.sysydz.net/CN/10.11781/sysydz201904593      或      http://www.sysydz.net/CN/Y2019/V41/I4/593

[1] 古茜.页岩气储层孔隙度测量方法综述及展望[J].国外测井技术,2017,38(6):19-24. GU Qian.Review and prospect of porosity measurement methods for shale gas reservoirs[J].World Well Logging Technology,2017,38(6):19-24.
[2] 孙建孟,宗成林,董旭,等.基于核磁共振的页岩粉碎样品孔隙度研究[J].测井技术,2017,41(5):512-516. SUN Jianmeng,ZONG Chenglin,DONG Xu,et al.Porosity measurement of crushed shales using NMR[J].Well Logging Technology,2017,41(5):512-516.
[3] 杨泽皓,董明哲,宫厚健,等.测量页岩径向渗透率和孔隙度的新方法[J].石油学报,2015,36(4):482-489. YANG Zehao,DONG Mingzhe,GONG Houjian,et al.A new method to measure radial permeability and porosity of shale[J].Acta Petrolei Sinica,2015,36(4):482-489.
[4] 杨巍,薛莲花,唐俊,等.页岩孔隙度测量实验方法分析与评价[J].沉积学报,2015,33(6):1258-1264. YANG Wei,XUE Lianhua,TANG Jun,et al.Analysis and evaluation of different measuring methods for shale porosity[J].Acta Sedimentologica Sinica,2015,33(6):1258-1264.
[5] 魏亚强,李国敏,董艳辉.三维激光扫描与气体置换联合测定岩石有效孔隙率[J].地质科技情报,2015,34(4):212-216. WEI Yaqiang,LI Guomin,DONG Yanhui.Determinating effective porosity by the combination of three-dimensional laser scanning and gas displacement[J].Geological Science and Technology Information,2015,34(4):212-216.
[6] 李军,武清钊,路菁,等.页岩气储层总孔隙度与有效孔隙度测量及测井评价:以四川盆地龙马溪组页岩气储层为例[J].石油与天然气地质,2017,38(3):602-609. LI Jun,WU Qingzhao,LU Jing,et al.Measurement and logging evaluation of total porosity and effective porosity of shale gas reservoirs:a case from the Silurian Longmaxi Formation shale in the Sichuan Basin[J].Oil & Gas Geology,2017,38(3):602-609.
[7] 刘淑芹,汪秀一,徐喜庆,等.孔隙度、渗透率测定结果差异性[J].大庆石油地质与开发,2016,35(1):76-79. LIU Shuqin,WANG Xiuyi,XU Xiqing,et al.Differences in the tested results of the porosity and permeability[J].Petroleum Geology & Oilfield Development in Daqing,2016,35(1):76-79.
[8] 张涛,张希巍.页岩孔隙定性与定量方法的对比研究[J].天然气勘探与开发,2017,40(4):34-43. ZHANG Tao,ZHANG Xiwei.Comparative study on qualitative and quantitative methods for shale pore characterization[J].Natural Gas Exploration and Development,2017,40(4):34-43.
[9] 李新,刘鹏,罗燕颖,等.页岩气储层岩心孔隙度测量影响因素分析[J].地球物理学进展,2015,30(5):2181-2187. LI Xin,LIU Peng,LUO Yanying,et al.Analysis of influencing factors on porosity measurement of shale gas reservoir core[J].Progress in Geophysics,2015,30(5):2181-2187.
[10] 陈思宇,田华,柳少波,等.致密储层样品体积测量对孔隙度误差的影响[J].石油实验地质,2016,38(6):850-856. CHEN Siyu,TIAN Hua,LIU Shaobo,et al.Influence of bulk volume measurement on porosity error in tight reservoir core plug analysis[J].Petroleum Geology & Experiment,2016,38(6):850-856.
[11] 付永红,司马立强,张楷晨,等.页岩岩心气测孔隙度测量参数初探与对比[J].特种油气藏,2018,25(3):144-148. FU Yonghong,SIMA Liqiang,ZHANG Kaichen,et al.Preliminary study and comparison of shale core gas-porosity test parameters[J].Special Oil & Gas Reservoirs,2018,25(3):144-148.
[12] 鲍云杰,鲍芳,李志明.基于磁性液体的岩样总体积测试方法[J].计测技术,2014,34(1):39-41. BAO Yunjie,BAO Fang,LI Zhiming.Method of measuring total volume of rock samples based on magnetic fluid[J].Metrology & Measurement Technology,2014,34(1):39-41.
[1] 程超, 林海宇, 蒋裕强, 冯磊, 夏雨, 牟春濠. 川南龙马溪组含气页岩热导率实验研究[J]. 石油实验地质, 2019, 41(2): 289-294.
[2] 路允乾, 蒋有录, 王尉, 朱建峰, 刘景东. 松辽盆地长岭断陷东岭地区营城组输导层孔隙演化与油气充注关系[J]. 石油实验地质, 2018, 40(4): 485-492.
[3] 曹涛涛, 邓模, 罗厚勇, 刘虎, 刘光祥, HURSTHOUSE Andrew Stefan. 下扬子地区中上二叠统页岩有机孔发育特征[J]. 石油实验地质, 2018, 40(3): 315-322.
[4] 王保华, 陆建林, 李浩, 宋振响, 左宗鑫. 基于孔隙成因的泥页岩总孔隙度恢复方法研究——以渤海湾盆地东营凹陷沙三下亚段为例[J]. 石油实验地质, 2017, 39(5): 724-728.
[5] 张茜, 孙卫, 杨晓菁, 李浩. 致密砂岩储层差异性成岩演化对孔隙度演化定量表征的影响——以鄂尔多斯盆地华庆地区长63储层为例[J]. 石油实验地质, 2017, 39(1): 126-133.
[6] 陈思宇, 田华, 柳少波, 李才喜, 郝加庆, 郑永平. 致密储层样品体积测量对孔隙度误差的影响[J]. 石油实验地质, 2016, 38(6): 850-856.
[7] 李广友, 马中良, 郑家锡, 鲍芳, 郑伦举. 油页岩不同温度原位热解物性变化核磁共振分析[J]. 石油实验地质, 2016, 38(3): 402-406.
[8] 韩学辉, 李峰弼, 戴诗华, 张娟娟, 唐俊, 王雪亮, 王洪亮. 基于CO2置换的低渗透储层岩心饱和方法研究[J]. 石油实验地质, 2014, 36(6): 787-791.
[9] 李冰. SEC标准确定容积法储量计算参数[J]. 石油实验地质, 2014, 36(3): 381-384.
[10] 韩学辉, 杨龙, 王洪亮, 王雪亮, 房涛, 张娟娟. 一种实用的CO2溶解气驱岩心洗油方法[J]. 石油实验地质, 2013, 35(1): 111-114.
[11] 钱勤, 冯明刚, 彭劲, 李淑荣, 王燕. 测井精细解释在普光气田储量计算中的应用[J]. 石油实验地质, 2012, 34(5): 543-548.
[12] 冯明刚, 严丽, 王雪玲, 田雨, 王昆, 程斯洁. 元坝气田长兴组气藏有效储层物性下限标准研究[J]. 石油实验地质, 2012, 34(5): 535-538.
[13] 田华, 张水昌, 柳少波, 马行陟, 张洪. 致密储层孔隙度测定参数优化[J]. 石油实验地质, 2012, 34(3): 334-339.
[14] 唐洪, 廖明光, 胡俊, 靳松, 吴昌龙. 基于孔隙旋回建模单元的碳酸盐岩储层建模研究[J]. 石油实验地质, 2012, 34(3): 330-333.
[15] 李志明, 关德范, 徐旭辉, 秦建中, 郑伦举, 刘文斌, 伍校军. 有效泥质油源岩有机碳丰度评价标准研究—以东营凹陷为例[J]. 石油实验地质, 2009, 31(4): 379-383.