留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

致密砂岩储层微观孔喉分布特征及对可动流体的控制作用

钟红利 张凤奇 赵振宇 魏驰 刘阳

钟红利, 张凤奇, 赵振宇, 魏驰, 刘阳. 致密砂岩储层微观孔喉分布特征及对可动流体的控制作用[J]. 石油实验地质, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077
引用本文: 钟红利, 张凤奇, 赵振宇, 魏驰, 刘阳. 致密砂岩储层微观孔喉分布特征及对可动流体的控制作用[J]. 石油实验地质, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077
ZHONG Hongli, ZHANG Fengqi, ZHAO Zhenyu, WEI Chi, LIU Yang. Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077
Citation: ZHONG Hongli, ZHANG Fengqi, ZHAO Zhenyu, WEI Chi, LIU Yang. Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2021, 43(1): 77-85. doi: 10.11781/sysydz202101077

致密砂岩储层微观孔喉分布特征及对可动流体的控制作用

doi: 10.11781/sysydz202101077
基金项目: 

国家自然科学基金项目 41502137

国家油气重大专项项目 2017ZX05039-001-003

陕西省自然科学基础研究计划 2017JM4004

陕西省教育厅重点实验室科研计划项目 17JS110

详细信息
    作者简介:

    钟红利(1979-), 女, 博士, 讲师, 从事储层地质学和地震资料解释方面的研究。E-mail: 497322725@qq.com

    通讯作者:

    张凤奇(1981-), 男, 博士, 副教授, 从事非常规油气形成机制与富集规律方面的研究。E-mail: 155205417@qq.com

  • 中图分类号: TE122.2

Micro-scale pore-throat distributions in tight sandstone reservoirs and its constrain to movable fluid

  • 摘要: 为分析致密砂岩储层多尺度微观孔喉分布对可动流体的控制作用,以鄂尔多斯盆地伊陕斜坡东南部三叠系延长组长6、长7和长8油层组为例,将高压压汞与核磁共振技术结合,研究致密砂岩储层多尺度微观孔喉分布特征,将离心实验与核磁共振T2谱分析技术相结合,探讨致密砂岩储层可动流体的分布特征,两者结合研究致密砂岩储层孔喉分布对可动流体的控制作用。研究区延长组致密砂岩储层微观孔喉半径分布范围宽,分布在0.6~3 050.8 nm,主体分布在10~500 nm,表明该致密砂岩储层主要发育微、纳米级孔喉,主体为纳米级孔喉;致密砂岩储层中可动流体饱和度为9.83%~25.64%,平均值为17.53%,普遍较低。储层孔隙度和储层渗透率与可动流体孔隙度具有较好的正相关性,表明储层物性条件对致密砂岩储层可动流体分布具有较好的控制作用;大于50 nm孔喉占全部孔喉比率、大于100 nm孔喉占全部孔喉比率、最大孔喉半径、峰值孔喉半径等参数与储层可动流体孔隙度均具有较好的正相关性,表明储层中相对较大孔喉,尤其大于100 nm孔喉的分布对致密砂岩储层可动流体含量具有重要的控制作用;孔喉的分选系数与可动流体含量表现为正相关,这主要与致密砂岩储层中孔喉半径分布较宽且分选好的致密砂岩主要以细小孔喉为主有关。

     

  • 图  1  鄂尔多斯盆地伊陕斜坡东南部研究区位置及地层综合柱状图

    Figure  1.  Location and comprehensive strata profile of study area, southeastern Yishan slope, Ordos Basin

    图  2  鄂尔多斯盆地伊陕斜坡东南部研究区样品5核磁共振T2谱标定

    Figure  2.  T2 spectrum calibration diagram of sample 5 of study area, southeastern Yishan slope, Ordos Basin

    图  3  鄂尔多斯盆地伊陕斜坡东南部研究区7个致密砂岩样品的孔喉半径分布

    Figure  3.  Distribution of pore-throat radius of seven tight sandstone samples of study area, southeastern Yishan slope, Ordos Basin

    图  4  鄂尔多斯盆地伊陕斜坡东南部研究区样品5不同离心力后T2谱分布及含水饱和度变化

    Figure  4.  T2spectral distribution and water saturation variety of sample 5 under different centrifugal forces of study area, southeastern Yishan slope, Ordos Basin

    图  5  鄂尔多斯盆地伊陕斜坡东南部研究区样品6不同离心力后T2谱分布及含水饱和度变化

    Figure  5.  T2 spectral distribution and water saturation variety of sample 6 under different centrifugal forces of study area, southeastern Yishan slope, Ordos Basin

    图  6  鄂尔多斯盆地伊陕斜坡东南部研究区样品7不同离心力后T2谱分布及含水饱和度变化特征

    Figure  6.  T2 spectral distribution and water saturation variety of sample 7 under different centrifugal forces of study area, southeastern Yishan slope, Ordos Basin

    图  7  鄂尔多斯盆地伊陕斜坡东南部研究区可动流体孔隙度与孔隙度及渗透率的关系

    Figure  7.  Relationship between movable fluid porosity and porosity and permeability of study area, southeastern Yishan slope, Ordos Basin

    图  8  鄂尔多斯盆地伊陕斜坡东南部研究区高压压汞孔喉分布及渗透率贡献

    Figure  8.  Pore-throat distribution and permeability contribution by high pressure mercury test of study area, southeastern Yishan slope, Ordos Basin

    图  9  鄂尔多斯盆地伊陕斜坡东南部研究区可动流体孔隙度与不同孔喉区间占比的关系

    Figure  9.  Relationship between movable fluid porosity and the proportion of different pore-throats in the study area, southeastern Yishan slope, Ordos Basin

    图  10  鄂尔多斯盆地伊陕斜坡东南部研究区可动流体孔隙度与大于50 nm及大于100 nm孔喉占比的关系

    Figure  10.  Relationship between movable fluid porosity and the proportion of pore-throats greater than 50 and 100 nm of study area, southeastern Yishan slope, Ordos Basin

    图  11  鄂尔多斯盆地伊陕斜坡东南部研究区可动流体孔隙度与最大孔喉半径及峰值孔喉半径的关系

    Figure  11.  Relationship between movable fluid porosity and ratio of maximum pore-throat radius and peak pore-throat radius of study area, southeastern Yishan slope, Ordos Basin

    图  12  鄂尔多斯盆地伊陕斜坡东南部研究区可动流体孔隙度与孔喉分选系数的关系

    Figure  12.  Relationship between movable fluid porosity and sorting coefficient of pore-throats of study area, southeastern Yishan slope, Ordos Basin

    表  1  鄂尔多斯盆地伊陕斜坡东南部研究区核磁共振实验样品基本参数

    Table  1.   Basic parameters of testing samples for nuclear magnetic resonance of study area, southeastern Yishan slope, Ordos Basin

    样品号 井号 取心资料 常规物性 核磁共振T2谱转换孔喉分布
    油层组 顶深/m 岩性 气测孔隙度/% 水测孔隙度/% 渗透率平均值/(10-3 μm2) 转化系数/(nm·ms-1) 最小孔喉半径/nm 最大孔喉半径/nm
    1 M57-1 长6 908.78 砂岩 5.15 5.34 0.004 13.0 1.30 1 618.8
    2 M57-1 长6 909.42 砂岩 6.13 6.10 0.022 13.0 1.30 2 333.0
    3 M101 长7 859.98 砂岩 8.73 8.35 0.104 10.0 1.00 2 154.4
    4 M66-2 长7 975.33 砂岩 5.07 4.68 0.001 8.0 0.80 829.8
    5 M14-2 长7 739.24 砂岩 8.90 8.34 0.124 12.0 1.20 1 793.8
    6 M14-2 长7 742.69 砂岩 11.29 10.79 0.051 17.0 1.70 3 050.8
    7 M14-2 长8 911.94 砂岩 5.59 5.29 0.002 6.0 0.60 1 863.0
    平均值 11.3 1.13 1 949.1
    下载: 导出CSV

    表  2  鄂尔多斯盆地伊陕斜坡东南部研究区7个致密砂岩样品不同孔喉半径区间所控制的可动流体饱和度

    Table  2.   Movable fluid saturation controlled by different pore-throat radius intervals of seven tight sandstone samples of study area, southeastern Yishan slope, Ordos Basin

    样品号 不同状态下岩心含水饱和度/% 不同孔喉半径区间控制的可动流体饱和度/%
    0.14 MPa离心后 0.29 MPa离心后 1.43 MPa离心后 2.88 MPa离心后 大于1.0 μm 0.5~1.0 μm 0.10~0.5 μm 0.05~0.10 μm 大于0.05 μm总和
    1 98.50 96.27 92.60 79.61 1.50 2.23 3.66 13.00 20.39
    2 98.21 94.82 88.04 74.36 1.79 3.39 6.78 13.68 25.64
    3 96.76 93.66 88.88 78.86 3.24 3.10 4.78 10.02 21.14
    4 99.55 98.12 95.89 90.17 0.45 1.43 2.22 5.72 9.83
    5 96.54 94.54 90.65 85.39 3.46 2.00 3.89 5.26 14.61
    6 97.79 95.39 93.10 86.55 2.21 2.40 2.29 6.55 13.45
    7 98.89 96.16 90.31 82.36 1.11 2.73 5.85 7.95 17.64
    下载: 导出CSV
  • [1] 付金华, 喻建, 徐黎明, 等. 鄂尔多斯盆地致密油勘探开发新进展及规模富集可开发主控因素[J]. 中国石油勘探, 2015, 20(5): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201505002.htm

    FU Jinhua, YU Jian, XU Liming, et al. New progress in exploration and development of tight oil in Ordos Basin and main controlling factors of large-scale enrichment and exploitable capacity[J]. China Petroleum Exploration, 2015, 20(5): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201505002.htm
    [2] 杨华, 李士祥, 刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301000.htm
    [3] 杨智, 付金华, 郭秋麟, 等. 鄂尔多斯盆地三叠系延长组陆相致密油发现、特征及潜力[J]. 中国石油勘探, 2017, 22(6): 9-15. doi: 10.3969/j.issn.1672-7703.2017.06.002

    YANG Zhi, FU Jinhua, GUO Qiulin, et al. Discovery, characte-ristics and resource potential of continental tight oil in Triassic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2017, 22(6): 9-15. doi: 10.3969/j.issn.1672-7703.2017.06.002
    [4] 邹才能. 非常规油气地质[M]. 北京: 地质出版社, 2011.

    ZOU Caineng. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011.
    [5] 邹才能, 陶士振, 袁选俊, 等. "连续型"油气藏及其在全球的重要性: 成藏、分布与评价[J]. 石油勘探与开发, 2009, 36(6): 669-682. doi: 10.3321/j.issn:1000-0747.2009.06.001

    ZOU Caineng, TAO Shizhen, YUAN Xuanjun, et al. Global importance of "continuous" petroleum reservoirs: accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682. doi: 10.3321/j.issn:1000-0747.2009.06.001
    [6] 陶士振, 邹才能, 高晓辉, 等. 不同类型油气运移动力、聚集机理与分布规律[C]//中国地球物理学会第二十七届年会论文集. 长沙: 中国地球物理学会, 2011: 72-73.

    TAO Shizhen, ZOU Caineng, GAO Xiaohui, et al. Migration dynamic, accumulation mechanism and distribution law of oil and gas in different types[C]//Chinese Geophysical Society Symposium. Changsha: Chinese Geophysical Society, 2011: 72-73.
    [7] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [8] 邹才能, 陶士振, 杨智, 等. 中国非常规油气勘探与研究新进展[J]. 矿物岩石地球化学通报, 2012, 31(4): 312-322. doi: 10.3969/j.issn.1007-2802.2012.04.002

    ZOU Caineng, TAO Shizhen, YANG Zhi, et al. New advance in unconventional petroleum exploration and research in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4): 312-322. doi: 10.3969/j.issn.1007-2802.2012.04.002
    [9] LI Peng, JIA Chengzao, JIN Zhijun, et al. The characteristics of movable fluid in the Triassic lacustrine tight oil reservoir: a case study of the Chang 7 member of Xin'anbian Block, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 102: 126-137. doi: 10.1016/j.marpetgeo.2018.11.019
    [10] 朱如凯, 白斌, 崔景伟, 等. 非常规油气致密储集层微观结构研究进展[J]. 古地理学报, 2013, 15(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305008.htm

    ZHU Rukai, BAI Bin, CUI Jingwei, et al. Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201305008.htm
    [11] 蒋裕强, 陈林, 蒋婵, 等. 致密储层孔隙结构表征技术及发展趋势[J]. 地质科技情报, 2014, 33(3): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403010.htm

    JIANG Yuqiang, CHEN Lin, JIANG Chan, et al. Characterization techniques and trends of the pore structure of tight reservoirs[J]. Geological Science and Technology Information, 2014, 33(3): 63-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201403010.htm
    [12] LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457.
    [13] 公言杰, 柳少波, 赵孟军, 等. 核磁共振与高压压汞实验联合表征致密油储层微观孔喉分布特征[J]. 石油实验地质, 2016, 38(3): 389-394. doi: 10.11781/sysydz201603389

    GONG Yanjie, LIU Shaobo, ZHAO Mengjun, et al. Characterization of micro pore throat radius distribution in tight oil reservoirs by NMR and high pressure mercury injection[J]. Petroleum Geology & Experiment, 2016, 38(3): 389-394. doi: 10.11781/sysydz201603389
    [14] 刘刚, 吴浩, 张春林, 等. 基于压汞和核磁共振对致密油储层渗透率的评价: 以鄂尔多斯盆地陇东地区延长组长7油层组为例[J]. 高校地质学报, 2017, 23(3): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201703013.htm

    LIU Gang, WU Hao, ZHANG Chunlin, et al. Permeability evaluation of tight oil sandstone reservoirs based on MICP and NMR data: a case study from Chang 7 reservoir of the Yanchang Formation in the Longdong area, Ordos Basin[J]. Geological Journal of China Universities, 2017, 23(3): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201703013.htm
    [15] 雷启鸿, 成良丙, 王冲, 等. 鄂尔多斯盆地长7致密储层可动流体分布特征[J]. 天然气地球科学, 2017, 28(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701003.htm

    LEI Qihong, CHENG Liangbing, WANG Chong, et al. A study on distribution features of movable fluids for Chang 7 tight reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201701003.htm
    [16] 王学武, 杨正明, 李海波, 等. 核磁共振研究低渗透储层孔隙结构方法[J]. 西南石油大学学报(自然科学版), 2010, 32(2): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201002016.htm

    WANG Xuewu, YANG Zhengming, LI Haibo, et al. Experimental study on pore structure of low permeability core with NMR spectra[J]. Journal of Southwest Petroleum University (Science & Techno-logy Edition), 2010, 32(2): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201002016.htm
    [17] 吴浩, 牛小兵, 张春林, 等. 鄂尔多斯盆地陇东地区长7段致密油储层可动流体赋存特征及影响因素[J]. 地质科技情报, 2015, 34(3): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503016.htm

    WU Hao, NIU Xiaobing, ZHANG Chunlin, et al. Characteristics and influencing factors of movable fluid in Chang 7 tight oil reservoir in Longdong area, Ordos Basin[J]. Geological Science and Technology Information, 2015, 34(3): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201503016.htm
    [18] 时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析: 以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm

    SHI Jianchao, QU Xuefeng, LEI Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir: a case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5): 827-834. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm
    [19] 李海波, 郭和坤, 杨正明, 等. 鄂尔多斯盆地陕北地区三叠系长7致密油赋存空间[J]. 石油勘探与开发, 2015, 42(3): 396-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503020.htm

    LI Haibo, GUO Hekun, YANG Zhengming, et al. Tight oil occurrence space of Triassic Chang 7 Member in northern Shaanxi area, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 396-400. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201503020.htm
    [20] 高辉, 解伟, 杨建鹏, 等. 基于恒速压汞技术的特低-超低渗砂岩储层微观孔喉特征[J]. 石油实验地质, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206

    GAO Hui, XIE Wei, YANG Jianpeng, et al. Pore throat characteristics of extra-ultra low permeability sandstone reservoir based on constant-rate mercury penetration technique[J]. Petroleum Geo-logy & Experiment, 2011, 33(2): 206-211. doi: 10.11781/sysydz201102206
    [21] 郭睿良, 陈小东, 马晓峰, 等. 鄂尔多斯盆地陇东地区延长组长7段致密储层水平向可动流体特征及其影响因素分析[J]. 天然气地球科学, 2018, 29(5): 665-674. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805008.htm

    GUO Ruiliang, CHEN Xiaodong, MA Xiaofeng, et al. Analysis of the characteristics and its influencing factors of horizontal movable fluid in the Chang 7 tight reservoir in Longdong area, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(5): 665-674. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805008.htm
    [22] 黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及影响因素: 以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J]. 石油学报, 2019, 40(5): 557-567. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm

    HUANG Xing, LI Tiantai, WANG Xiangzeng, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir: a case study from Chang-8 oil layer of Yanchang Formation in Jiyuan oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm
    [23] 董鑫旭, 冯强汉, 王冰, 等. 苏里格西部致密砂岩储层不同孔隙类型下的气水渗流规律[J]. 油气地质与采收率, 2019, 26(6): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201906005.htm

    DONG Xinxu, FENG Qianghan, WANG Bing, et al. Gas-water percolation law of tight sandstone reservoirs with different pore types in western Sulige[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201906005.htm
    [24] 徐永强, 何永宏, 卜广平, 等. 基于微观孔喉结构及渗流特征建立致密储层分类评价标准: 以鄂尔多斯盆地陇东地区长7储层为例[J]. 石油实验地质, 2019, 41(3): 451-460. doi: 10.11781/sysydz201903451

    XU Yongqiang, HE Yonghong, BU Guangping, et al. Establishment of classification and evaluation criteria for tight reservoirs based on characteristics of microscopic pore throat structure and percolation: a case study of Chang 7 reservoir in Longdong area, Ordos Basin[J]. Petroleum Geology and Experiment, 2019, 41(3): 451-460. doi: 10.11781/sysydz201903451
    [25] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究: 以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801014.htm

    LI Min, WANG Hao, CHEN Meng. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs: a case study of Lucaogou Formation in Jimsar Sag, NW China[J]. Lithologic Reservoirs, 2018, 30(1): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201801014.htm
    [26] 王瑞飞, 陈明强. 特低渗透砂岩储层可动流体赋存特征及影响因素[J]. 石油学报, 2008, 29(4): 558-561. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200804016.htm

    WANG Ruifei, CHEN Mingqiang. Characteristics and influencing factors of movable fluid in ultra-low permeability sandstone reservoir[J]. Acta Petrolei Sinica, 2008, 29(4): 558-561. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200804016.htm
    [27] 邱隆伟, 穆相骥, 李浩等. 杭锦旗地区下石盒子组致密砂岩储层成岩作用对孔隙发育的影响[J]. 油气地质与采收率, 2019, 26(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902006.htm

    QIU Longwei, MU Xiangji, LI Hao, et al. Influence of diagenesis of tight sandstone reservoir on the porosity development of Lower Shihezi Formation in Hangjinqi area, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201902006.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  82
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-14
  • 修回日期:  2020-12-04
  • 刊出日期:  2021-01-28

目录

    /

    返回文章
    返回