留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层—超深层油气成藏研究新进展及展望

关晓东 郭磊

关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
引用本文: 关晓东, 郭磊. 深层—超深层油气成藏研究新进展及展望[J]. 石油实验地质, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203
Citation: GUAN Xiaodong, GUO Lei. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(2): 203-209. doi: 10.11781/sysydz202302203

深层—超深层油气成藏研究新进展及展望

doi: 10.11781/sysydz202302203
基金项目: 

国家自然科学基金 U20B6001

国家自然科学基金 42172168

详细信息
    作者简介:

    关晓东(1968-), 男, 高级工程师, 从事油气勘探研究及科技管理。E-mail: guanxd@sinopec.com

  • 中图分类号: TE122.3

New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata

  • 摘要: 我国深层—超深层油气资源丰富,但勘探程度较低。深层—超深层具有比浅层更高的温度和压力,并且来自于深部的流体在深层的作用更强,因此,深层—超深层油气藏与浅层油气藏具有不同的成藏机理。通过广泛调研国内外相关研究,较为系统地总结了深层—超深层油气藏在成烃、成储和成藏方面的特殊性及其主控因素。提出深层—超深层环境中存在促进烃源灶继续生烃的物质和能量,能进一步促进油气形成;起源于深层—超深层储层之下的流体可以发挥建设性作用,从而在深层形成优质规模储层;流经烃源岩和储层的深部富CO2流体对深层烃类具有促排作用,并在浅层发挥促藏作用。尽管前人归纳的这些理论对指导发现规模油气藏尚存一些争议,但应该看到,在深层—超深层独特的地质条件下,在总结油气成藏规律时,全面、充分考虑各种因素,有助于提高深层—超深层探井成功率,降低勘探成本。

     

  • 图  1  传统的干酪根生烃模式

    据参考文献[5]修改。

    Figure  1.  Traditional hydrocarbon generation model of kerogen

    图  2  外源氢参与下有机质生烃模式(b) 与传统生烃模式(a)的异同

    据参考文献[15]修改。

    Figure  2.  Differences and similarities between organic matter hydrocarbon generation model with the participation of exogenous hydrogen (b) and traditional hydrocarbon generation model (a)

    图  3  外源氢作用下烃源岩生烃新模式

    据参考文献[19]修改。

    Figure  3.  A new hydrocarbon generation model of source rocks under the action of exogenous hydrogen

    图  4  沉积盆地基底之下的流体影响储层孔隙度演化

    据参考文献[36]修改。

    Figure  4.  Fluid under the basement of sedimentary basin affects the evolution of reservoir porosity

    图  5  深源CO2—原油耦合成藏模式

    据参考文献[53]修改。

    Figure  5.  Deep source CO2 and crude oil coupling reservoir formation model

  • [1] 何治亮, 马永生, 朱东亚, 等. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向[J]. 石油与天然气地质, 2021, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htm

    HE Zhiliang, MA Yongsheng, ZHU Dongya, et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil & Gas Geology, 2021, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htm
    [2] 云露, 邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例[J]. 石油学报, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm

    YUN Lu, DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: a case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
    [3] 杨海军, 陈永权, 田军, 等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007

    YANG Haijun, CHEN Yongquan, TIAN Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. doi: 10.3969/j.issn.1672-7703.2020.02.007
    [4] 金之钧, 胡文瑄, 张刘平, 等. 深部流体活动及油气成藏效应[M]. 北京: 科学出版社, 2007: 66-76.

    JIN Zhijun, HU Wenxuan, ZHANG Liuping, et al. Deep fluid activity and hydrocarbon accumulation effect[M]. Beijing: Science Press, 2007: 66-76.
    [5] TISSOT B P, WELTE D H. Petroleum formation and occurrence[M]. 2nd ed. New York: Springer-Verlag, 1984.
    [6] LEWAN M D, WINTERS J C, MCDONALD J H. Generation of oil-like pyrolyzates from organic-rich shales[J]. Science, 1979, 203(4383): 897-899. doi: 10.1126/science.203.4383.897
    [7] LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723. doi: 10.1016/S0016-7037(97)00176-2
    [8] BURNHAM A. Comments on "Experiments on the role of water in petroleum formation" by M. D. Lewan[J]. Geochim et Cosmochimica Acta, 1998, 62: 2209-2212. http://www.sciencedirect.com/science?_ob=PdfExcerptURL&_imagekey=1-s2.0-S0016703798001495-main.pdf&_piikey=S0016703798001495&_cdi=271865&_orig=article&_zone=centerpane&_fmt=abst&_eid=1-s2.0-S0016703798001495&_user=12975512&md5=5b3df1cb7da0e87b82bbee2b5f45e7e2&ie=/excerpt.pdf
    [9] LEWAN M D. Reply to the comment by A. K. Burnham on "Experiments on the role of water in petroleum formation"[J]. Geochimica et Cosmochimica Acta, 1998, 62: 2211-2216. doi: 10.1016/S0016-7037(98)00150-1
    [10] ZHOU Jianwei, LI Shuyuan, ZHONG Ningning. Study on hydropyrolysis of sedimentary organic matter and geochemical information of hydropyrolysates[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 648-654. doi: 10.1016/S1872-5813(08)60002-X
    [11] WU Liangliang, LIAO Yuhong, FANG Yunxin, et al. The comparison of biomarkers released by hydropyrolysis and Soxhlet extraction from source rocks of different maturities[J]. Chinese Science Bulletin, 2013, 58(3): 373-383. doi: 10.1007/s11434-012-5377-7
    [12] FERNANDO F L P. Recent advances on fast hydropyrolysis of biomass[J]. Catalysis Today, 2016, 269: 148-155. doi: 10.1016/j.cattod.2016.01.004
    [13] JIN Qiang, XIONG Shousheng, LU Peide. Catalysis and hydrogenation: volcanic activity and hydrocarbon generation in rift basins, Eastern China[J]. Applied Geochemistry, 1999, 14(5): 547-558. doi: 10.1016/S0883-2927(98)00086-9
    [14] 金之钧, 张刘平, 杨雷, 等. 沉积盆地深部流体的地球化学特征及油气成藏效应初探[J]. 地球科学, 2002, 27(6): 659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001

    JIN Zhijun, ZHANG Liuping, YANG Lei, et al. Primary study of geochemical features of deep fluids and their effectiveness on oil/gas reservoir formation in sedimental basins[J]. Earth Science, 2002, 27(6): 659-665. doi: 10.3321/j.issn:1000-2383.2002.06.001
    [15] SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333. doi: 10.1038/nature02132
    [16] BELL D R, ROSSMAN G R. Water in Earth's mantle: the role of nominally anhydrous minerals[J]. Science, 1992, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391
    [17] MURAKAMI M, HIROSE K, YURIMOTO H, et al. Water in Earth's lower mantle[J]. Science, 2002, 295(5561): 1885-1887. doi: 10.1126/science.1065998
    [18] HALLIS L J, HUSS G R, NAGASHIMA K, et al. Evidence for primordial water in Earth's deep mantle[J]. Science, 2015, 350(6262): 795-797. doi: 10.1126/science.aac4834
    [19] HE Kun, ZHANG Shuichang, MI Jingkui, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation, 2019, 37(5): 1558-1576. http://www.xueshufan.com/publication/2949732735
    [20] HUANG Xiaowei, JIN Zhijun, LIU Quanyou, et al. Geochemical characteristics of catalytic hydrogenation of low-mature kerogen under deep fluids[J]. Frontiers in Earth Science, 2022, 10: 885860. doi: 10.3389/feart.2022.885860
    [21] HUANG Xiaowei, JIN Zhijun, LIU Quanyou, et al. Catalytic hydrogenation of post-mature hydrocarbon source rocks under deep-derived fluids: an example of Early Cambrian Yurtus Formation, Tarim Basin, NW China[J]. Frontiers in Earth Science, 2021, 9: 626111. doi: 10.3389/feart.2021.626111
    [22] 孟庆强. 地质体中天然氢气成因识别方法初探[J]. 石油实验地质, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552

    MENG Qingqiang. Identification method for the origin of natural hydrogen gas in geological bodies[J]. Petroleum Geology & Experiment, 2022, 44(3): 552-558. doi: 10.11781/sysydz202203552
    [23] 孟庆强, 金之钧, 孙冬胜, 等. 高含量氢气赋存的地质背景及勘探前景[J]. 石油实验地质, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208

    MENG Qingqiang, JIN Zhijun, SUN Dongsheng, et al. Geological background and exploration prospects for the occurrence of high-content hydrogen[J]. Petroleum Geology & Experiment, 2021, 43(2): 208-216. doi: 10.11781/sysydz202102208
    [24] 马永生, 蔡勋育, 赵培荣. 深层、超深层碳酸盐岩油气储层形成机理研究综述[J]. 地学前缘, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201104014.htm
    [25] 张抗. 塔河油田的发现及其地质意义[J]. 石油与天然气地质, 1999, 20(2): 120-124. doi: 10.3321/j.issn:0253-9985.1999.02.005

    ZHANG Kang. The discovery of Tahe oilfield and its geologic significance[J]. Oil & Gas Geology, 1999, 20(2): 120-124. doi: 10.3321/j.issn:0253-9985.1999.02.005
    [26] 周新源, 王招明, 杨海军, 等. 中国海相油气田勘探实例之五: 塔中奥陶系大型凝析气田的勘探和发现[J]. 海相油气地质, 2006, 11(1): 45-51. doi: 10.3969/j.issn.1672-9854.2006.01.008

    ZHOU Xinyuan, WANG Zhaoming, YANG Haijun, et al. Cases of discovery and exploration of marine fields in China (Part 5): Tazhong Ordovician condensate field in Tarim Basin[J]. Marine Origin Petroleum Geology, 2006, 11(1): 45-51. doi: 10.3969/j.issn.1672-9854.2006.01.008
    [27] 马永生, 郭旭升, 郭彤楼, 等. 四川盆地普光大型气田的发现与勘探启示[J]. 地质论评, 2005, 51(4): 477-480. doi: 10.3321/j.issn:0371-5736.2005.04.017

    MA Yongsheng, GUO Xusheng, GUO Tonglou, et al. Discovery of the large-scale Puguang gas field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting[J]. Geological Review, 2005, 51(4): 477-480. doi: 10.3321/j.issn:0371-5736.2005.04.017
    [28] 赵贤正, 金凤鸣, 王权, 等. 中国东部超深超高温碳酸盐岩潜山油气藏的发现及关键技术: 以渤海湾盆地冀中坳陷牛东1潜山油气藏为例[J]. 海相油气地质, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001

    ZHAO Xianzheng, JIN Fengming, WANG Quan, et al. A superdeep and superhigh temperature carbonate buried-hill reservoir in eastern China: discovery and the key exploration technology of Nudong-1 buried-hill oil and gas reservoir in Jizhong Depression, Bohaiwan Basin[J]. Marine Origin Petroleum Geology, 2011, 16(4): 1-10. doi: 10.3969/j.issn.1672-9854.2011.04.001
    [29] SCHMOKER J W, HALLEY R B. Carbonate porosity versus depth: a predictable relation for South Florida[J]. AAPG Bulletin, 1982, 66(12): 2561-2570. doi: 10.1306/03b5ac73-16d1-11d7-8645000102c1865d
    [30] ZHU Dongya, JIN Zhujun, HU Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science China Earth Sciences, 2010, 53(3): 368-381. doi: 10.1007/s11430-010-0028-9
    [31] JIN Zhijun, ZHU Dongya, HU Wenxuan, et al. Mesogenetic dissolution of the Middle Ordovician limestone in the Tahe oilfield of Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2009, 26(6): 753-763. doi: 10.1016/j.marpetgeo.2008.08.005
    [32] MENG Qingqiang, ZHU Dongya, HU Wenxuan, et al. Dissolution-filling mechanism of atmospheric precipitation controlled by both thermodynamics and kinetics[J]. Science China Earth Sciences, 2013, 56(12): 2150-2159. doi: 10.1007/s11430-013-4711-5
    [33] 朱东亚, 孟庆强, 金之钧, 等. 富CO2深部流体对碳酸盐岩的溶蚀-充填作用的热力学分析[J]. 地质科学, 2012, 47(1): 187-201. doi: 10.3969/j.issn.0563-5020.2012.01.016

    ZHU Dongya, MENG Qingqiang, JIN Zhijun, et al. Thermo-dynamic analysis for carbonate dissolution-filling under influence of CO2-rich deep fluid[J]. Chinese Journal of Geology, 2012, 47(1): 187-201. doi: 10.3969/j.issn.0563-5020.2012.01.016
    [34] 朱东亚, 孟庆强, 胡文瑄, 等. 塔里木盆地塔北和塔中地区流体作用环境差异性分析[J]. 地球化学, 2013, 42(1): 82-94. doi: 10.3969/j.issn.0379-1726.2013.01.010

    ZHU Dongya, MENG Qingqiang, HU Wenxuan, et al. Differences between fluid activities in the central and north Tarim Basin[J]. Geochimica, 2013, 42(1): 82-94. doi: 10.3969/j.issn.0379-1726.2013.01.010
    [35] 朱东亚, 金之钧, 孙冬胜, 等. 南方震旦系灯影组热液白云岩化及其对储层形成的影响研究: 以黔中隆起为例[J]. 地质科学, 2014, 49(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401012.htm

    ZHU Dongya, JIN Zhijun, SUN Dongsheng, et al. Hydrothermally dolomitized reservoir bed in Sinian Dengying Formation, northern China: an example from Central Guizhou Uplift[J]. Chinese Journal of Geology, 2014, 49(1): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401012.htm
    [36] 孟庆强, 朱东亚, 解启来, 等. 塔中和巴楚地区深部流体活动控制因素及有利区预测[J]. 石油实验地质, 2011, 33(6): 597-601. doi: 10.11781/sysydz201106597

    MENG Qingqiang, ZHU Dongya, JIE Qilai, et al. Controlling factors for deep fluid activity and prediction of positive effect area in middle Tarim and Bachu regions[J]. Petroleum Geology & Experiment, 2011, 33(6): 597-601. doi: 10.11781/sysydz201106597
    [37] 马永生, 蔡勋育, 赵培荣. 元坝气田长兴组-飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 2014, 35(6): 1001-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406001.htm

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba gas field[J]. Acta Petrolei Sinica, 2014, 35(6): 1001-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406001.htm
    [38] 蒋小琼, 管宏林, 郑和荣, 等. 四川盆地普光气田飞仙关组白云岩储层成因探讨[J]. 石油实验地质, 2014, 36(3): 332-336. doi: 10.11781/sysydz201403332

    JIANG Xiaoqiong, GUAN Honglin, ZHENG Herong, et al. Discussion on origin of dolomite reservoirs in Feixianguan Formation, Puguang Gas Field, Sichuan Basin[J]. Petroleum Geology & Experiment, 2014, 36(3): 332-336. doi: 10.11781/sysydz201403332
    [39] 黄善炳. 金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J]. 石油勘探与开发, 1996, 23(2): 32-34. doi: 10.3321/j.issn:1000-0747.1996.02.009

    HUANG Shanbing. The character of dawsonite in sandstone reservoirs of the Funing Formation in Jinhu Sag and its influence on reservoir properties[J]. Petroleum Exploration and Development, 1996, 23(2): 32-34. doi: 10.3321/j.issn:1000-0747.1996.02.009
    [40] 高玉巧, 刘立, 杨会东, 等. 松辽盆地孤店二氧化碳气田片钠铝石的特征及成因[J]. 石油学报, 2007, 28(4): 62-67. doi: 10.3321/j.issn:0253-2697.2007.04.012

    GAO Yuqiao, LIU Li, YANG Huidong, et al. Characteristics and origin of dawsonite in Gudian carbon dioxide gas field of Songliao Basin[J]. Acta Petrolei Sinica, 2007, 28(4): 62-67. doi: 10.3321/j.issn:0253-2697.2007.04.012
    [41] 董林森, 刘立, 曲希玉, 等. 松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J]. 吉林大学学报(地球科学版), 2009, 39(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906012.htm

    DONG Linsen, LIU Li, QU Xiyu, et al. Crystal characteristics and genesis of dawsonite of the Qingshankou Formation in the Honggang oilfield in the southern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(6): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200906012.htm
    [42] 孟庆强, 张刘平, 邹安德. 富CO2流体对深部碎屑储层影响机制模拟研究[J]. 石油天然气学报, 2007, 29(2): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200702010.htm

    MENG Qingqiang, ZHANG Liuping, ZOU Ande. Simulation study on the mechanism of effect of CO2 enriched fluid on deep clastic reservoirs[J]. Journal of Oil and Gas Technology, 2007, 29(2): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200702010.htm
    [43] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京: 科学出版社, 2004: 48.

    LU Huanzhang, FAN Hongrui, NI Pei, et al. Fluid inclusions[M]. Beijing: Science Press, 2004: 48.
    [44] HYATT J A. Liquid and supercritical carbon dioxide as organic solvents[J]. The Journal of Organic Chemistry, 1984, 49(26): 5097-5101. doi: 10.1021/jo00200a016
    [45] STAHL E, SCHUETZ E, MANGOLD H K. Extraction of seed oils with liquid and supercritical carbon dioxide[J]. Journal of Agricultural and Food Chemistry, 1980, 28(6): 1153-1157. http://www.onacademic.com/detail/journal_1000036027701810_d6e8.html
    [46] BEVERIDGE T, HARRISON J E. Microscopic structural components of sea buckthorn (Hippophae rhamnoides L. ) juice prepared by centrifugation[J]. LWT-Food Science and Technology, 2001, 34(7): 458-461. http://www.onacademic.com/detail/journal_1000035270597410_2490.html
    [47] KAZARIAN S G. Enhancing high-throughput technology and micro-fluidics with FTIR spectroscopic imaging[J]. Analytical and Bioanalytical Chemistry, 2007, 388(3): 529-532. http://www.onacademic.com/detail/journal_1000034439769710_db83.html
    [48] SUBRAMANIAM V, KIRSCH A K, RIVERA-POMAR R V, et al. Scanning near-field optical microscopy and microspectroscopy of green fluorescent protein in intact Escherichia coli bacteria[J]. Journal of Fluorescence, 1997, 7(4): 381-385. http://www.onacademic.com/detail/journal_1000034821027510_b32c.html
    [49] BONDAR E, KOEL M. Application of supercritical fluid extraction to organic geochemical studies of oil shales[J]. Fuel, 1998, 77(3): 211-213. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016236197001889&originContentFamily=serial&_origin=article&_ts=1432048411&md5=63943f9633b350a135b3ccbae812d154
    [50] OKAMOTO I, LI Xiaochun, OHSUMI T. Effect of supercritical CO2 as the organic solvent on cap rock sealing performance for underground storage[J]. Energy, 2005, 30(11/12): 2344-2351. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0360544204003901&originContentFamily=serial&_origin=article&_ts=1487682898&md5=4c0fd5aa772c1aa8a9d186e2d4410a20
    [51] DIEP P, JORDAN K D, JOHNSON J K, et al. CO2-fluorocarbon and CO2-hydrocarbon interactions from first-principles calculations[J]. The Journal of Physical Chemistry A, 1998, 102(12): 2231-2236. doi: 10.1021/jp9730306
    [52] 谷丽冰, 李治平, 欧瑾. 利用二氧化碳提高原油采收率研究进展[J]. 中国矿业, 2007, 16(10): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200710021.htm

    GU Libing, LI Zhiping, OU Jin. The existing state of enhanced oil recovery by utilizing carbon dioxide[J]. China Mining Magazine, 2007, 16(10): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200710021.htm
    [53] HOFFMANN C F, HENLEY R W, HIGGINS N C, et al. Biogenic hydrocarbons in fluid inclusions from the aberfoyle tin-tungsten deposit, Tasmania, Australia[J]. Chemical Geology, 1988, 70(4): 287-299. http://www.onacademic.com/detail/journal_1000035295950010_6ce4.html
    [54] DUTKIEWICZ A, RIDLEY J, BUICK R. Oil-bearing CO2-CH4-H2O fluid inclusions: oil survival since the Palaeoproterozoic after high temperature entrapment[J]. Chemical Geology, 2003, 194(1/3): 51-79. http://www.onacademic.com/detail/journal_1000035460657410_5a76.html
    [55] 孙樯, 谢鸿森, 郭捷, 等. 地球深部流体与油气生成及运移浅析[J]. 地球科学进展, 2000, 15(3): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003007.htm

    SUN Qiang, XIE Hongsen, GUO Jie, et al. Fluids in deep earth and origin and migration of oil and gas[J]. Advances in Earth Science, 2000, 15(3): 283-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200003007.htm
    [56] 马安来, 孙红军, 郑磊, 等. 桑托斯盆地Jupiter油气田富含CO2油气藏形成机制[J]. 石油与天然气地质, 2017, 38(2): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702020.htm

    MA Anlai, SUN Hongjun, ZHENG Lei, et al. A study on forming mechanisms of CO2-rich reservoirs in Jupiter oilfield, Santos Basin, Brazil[J]. Oil & Gas Geology, 2017, 38(2): 371-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201702020.htm
    [57] 何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学(中国地质大学学报), 2010, 35(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001011.htm

    HE Jiaxiong, ZHU Youhai, WENG R N, et al. Characters of north-west mud diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas[J]. Earth Science(Journal of China University of Geosciences), 2010, 35(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001011.htm
    [58] LIU Quanyou, ZHU Dongya, JIN Zhijun, et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113000.
  • 加载中
图(5)
计量
  • 文章访问数:  676
  • HTML全文浏览量:  204
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 修回日期:  2023-02-23
  • 刊出日期:  2023-03-28

目录

    /

    返回文章
    返回