留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩中单体有机质孔隙演化的原位热模拟实验

席斌斌 潘安阳 鲍芳 卢龙飞 曹涛涛 王晔 马中良 刘显

席斌斌, 潘安阳, 鲍芳, 卢龙飞, 曹涛涛, 王晔, 马中良, 刘显. 页岩中单体有机质孔隙演化的原位热模拟实验[J]. 石油实验地质, 2023, 45(5): 1016-1025. doi: 10.11781/sysydz2023051016
引用本文: 席斌斌, 潘安阳, 鲍芳, 卢龙飞, 曹涛涛, 王晔, 马中良, 刘显. 页岩中单体有机质孔隙演化的原位热模拟实验[J]. 石油实验地质, 2023, 45(5): 1016-1025. doi: 10.11781/sysydz2023051016
XI Binbin, PAN Anyang, BAO Fang, LU Longfei, CAO Taotao, WANG Ye, MA Zhongliang, LIU Xian. In-situ thermal simulation experiment of single organic matter pore evolution in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 1016-1025. doi: 10.11781/sysydz2023051016
Citation: XI Binbin, PAN Anyang, BAO Fang, LU Longfei, CAO Taotao, WANG Ye, MA Zhongliang, LIU Xian. In-situ thermal simulation experiment of single organic matter pore evolution in shale[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2023, 45(5): 1016-1025. doi: 10.11781/sysydz2023051016

页岩中单体有机质孔隙演化的原位热模拟实验

doi: 10.11781/sysydz2023051016
基金项目: 

国家自然科学基金青年基金 42002136

国家自然科学基金 42072156

企业创新发展联合项目 U19B6003-03

详细信息
    作者简介:

    席斌斌(1981-), 男, 硕士, 高级工程师, 从事流体包裹体地质学等研究。E-mail: xibb.syky@sinopec.com

    通讯作者:

    潘安阳(1986-), 男, 博士, 高级工程师, 从事烃源岩有机地球化学研究。E-mail: panay.syky@sinopec.com

  • 中图分类号: TE135

In-situ thermal simulation experiment of single organic matter pore evolution in shale

  • 摘要: 有机质孔隙是我国南方页岩气重要的储集空间,而有机质类型与有机质孔隙发育息息相关。为实现单体有机质孔隙演化过程的原位观测,揭示下古生界页岩显微组分热解过程中的孔隙演化过程,以低成熟度的美国俄亥俄上奥陶统页岩以及欧洲波罗的海东部下志留统页岩为研究对象,联合运用飞秒激光、冷热台、显微镜以及扫描电镜等技术,实现页岩中单体有机质孔隙演化过程的原位观测,进而辨别不同类型有机质的孔隙发育过程和演化规律。对低成熟度的“倾气”型笔石以及“倾油”型层状藻类体孔隙热演化过程的原位观测分析结果表明:(1)笔石的体积开始发生明显变化的起始温度要高于层状藻类体,生烃演化要晚于层状藻类体;(2)笔石和层状藻类体在热演化过程中均形成了明显的收缩缝,但就形成收缩缝的规模而言,笔石明显较小,生烃转化率要低于层状藻类体;(3)笔石与层状藻类体内部孔隙的演化存在明显的差异,笔石原有的生物组织孔在高温阶段发生了明显的扩容并且有新的内部孔隙生成,而层状藻类体在整个热演化过程中并未形成内部孔隙,证实了“生气窗”是有机质孔隙大量发育的主要阶段。有机质组成以及结构的不同可能是造成上述两种有机质孔隙演化过程存在差异的主要原因。

     

  • 图  1  原位热模拟实验样品O-1和G-3显微照片

    a-d为样品O-1,e-f为样品G-3;a, b,e为显微镜下照片,c, d,f为扫描电镜下照片。

    Figure  1.  Micro-photographs of sample O-1 and G-3 for in-situ thermal simulation experiment

    图  2  原位热模拟实验过程中笔石形貌演化过程显微照片

    a-l为O-1中单体笔石照片,其中a-f为电镜下照片,i-l为显微镜下照片;m-p为G-3中单体笔石电镜照片。

    Figure  2.  Micro-photographs of morphological evolution of graptolite during in-situ thermal simulation experiment

    图  3  原位热模拟实验G-3样品层状藻类体形态演化过程

    a-f为电镜下照片,h-p为显微镜下照片。

    Figure  3.  Micro-photographs of morphological evolution of lamalginite in sample G-3 during in-situ thermal simulation experiment

    图  4  原位热模拟实验中笔石孔隙演化过程电镜照片

    a-f为O-1样品中单体笔石照片,其中b-f为a中箭头所示部位的放大照片,b-f中的红点为同一位置;g-i为G-03样品中单体笔石局部照片。

    Figure  4.  Scanning electronic microscope photographs of pore evolution of graptolite during in-situ thermal simulation experiment

  • [1] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. doi: 10.11698/PED.2015.06.01

    ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. doi: 10.11698/PED.2015.06.01
    [2] 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm

    ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    [3] 董大忠, 邹才能, 杨桦, 等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(S1): 107-114. doi: 10.7623/syxb2012S1013

    DONG Dazhong, ZOU Caineng, YANG Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(S1): 107-114. doi: 10.7623/syxb2012S1013
    [4] 郭旭升, 郭彤楼, 魏志红, 等. 中国南方页岩气勘探评价的几点思考[J]. 中国工程科学, 2012, 14(6): 101-105. doi: 10.3969/j.issn.1009-1742.2012.06.014

    GUO Xusheng, GUO Tonglou, WEI Zhihong, et al. Thoughts on shale gas exploration in southern China[J]. Engineering Sciences, 2012, 14(6): 101-105. doi: 10.3969/j.issn.1009-1742.2012.06.014
    [5] 郭旭升, 赵永强, 申宝剑, 等. 中国南方海相页岩气勘探理论: 回顾与展望[J]. 地质学报, 2022, 96(1): 172-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201011.htm

    GUO Xusheng, ZHAO Yongqiang, SHEN Baojian, et al. Marine shale gas exploration theory in southern China: review and prospects[J]. Acta Geologica Sinica, 2022, 96(1): 172-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201011.htm
    [6] 赵文智, 李建忠, 杨涛, 等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发, 2016, 43(4): 499-510. doi: 10.11698/PED.2016.04.01

    ZHAO Wenzhi, LI Jianzhong, YANG Tao, et al. Geological diffe-rence and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510. doi: 10.11698/PED.2016.04.01
    [7] 马新华, 谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm
    [8] 张喜淳, 胡晨林, 田继军, 等. 川南ZX向斜五峰组—龙马溪组页岩孔隙特征及差异性[J]. 断块油气田, 2022, 29(4): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202204006.htm

    ZHANG Xichun, HU Chenlin, TIAN Jijun, et al. Characteristics and differences of shale pores in Wufeng-Longmaxi Formation of ZX syncline, southern Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2022, 29(4): 469-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202204006.htm
    [9] 舒红林, 何方雨, 李季林, 等. 四川盆地大安区块五峰组—龙马溪组深层页岩地质特征与勘探有利区[J]. 天然气工业, 2023, 43(6): 30-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202306003.htm

    SHU Honglin, HE Fangyu, LI Jilin, et al. Geological characteristics and favorable exploration areas of Wufeng Formation-Longmaxi Formation deep shale in the Da'an Block, Sichuan Basin[J]. Natural Gas Industry, 2023, 43(6): 30-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202306003.htm
    [10] 熊亮, 董晓霞, 赵勇, 等. 四川盆地华蓥山五峰组—龙马溪组剖面特征及其勘探意义[J]. 油气藏评价与开发, 2022, 12(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201005.htm

    XIONG Liang, DONG Xiaoxia, ZHAO Yong, et al. Characteristics and exploration significance of Wufeng-Longmaxi Formation stratigraphic section in Mount Huaying, Sichuan Basin[J]. Reservoir Evaluation and Development, 2022, 12(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201005.htm
    [11] 廖崇杰, 陈雷, 郑健, 等. 四川盆地长宁西部地区上奥陶统五峰组—下志留统龙马溪组龙一1亚段页岩岩相划分及意义[J]. 石油实验地质, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037

    LIAO Chongjie, CHEN Lei, ZHENG Jian, et al. Classification of shale lithofacies from Ordovician Wufeng Formation to first section of first member of Silurian Longmaxi Formation, western Changning area, Sichuan Basin, and its significance[J]. Petroleum Geology & Experiment, 2022, 44(6): 1037-1047. doi: 10.11781/sysydz2022061037
    [12] 何希鹏, 高玉巧, 马军, 等. 重庆市武隆区黄莺乡五峰组—龙马溪组剖面沉积特征及地质意义[J]. 油气藏评价与开发, 2022, 12(1): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201008.htm

    HE Xipeng, GAO Yuqiao, MA Jun, et al. Sedimentary characteristics and geological significance of outcrop in Wufeng-Longmaxi Formation, Huangying Town, Wulong District, Chongqing[J]. Reservoir Evaluation and Development, 2022, 12(1): 95-106. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202201008.htm
    [13] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm

    GUO Xusheng. Rules of two factor enrichiment for marine shale gas in southern China: understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407001.htm
    [14] 魏祥峰, 刘珠江, 王强, 等. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm

    WEI Xiangfeng, LIU Zhujiang, WANG Qiang, et al. Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(8): 1041-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202008001.htm
    [15] 周晓峰, 郭伟, 李熙喆, 等. 放射虫硅质壳腔体微纳米硅质—有机质聚合体赋存特征、成因及油气地质意义: 以四川盆地五峰—龙马溪组为例[J]. 东北石油大学学报, 2021, 45(6): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202106006.htm

    ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Occurrence characteristics, genesis and petroleum geological significance of micro-nano silica-organic matter aggregate in radiolarian siliceous shell cavity: a case study of Wufeng-Longmaxi formation in Sichuan Basin, SW China[J]. Journal of Northeast Petroleum University, 2021, 45(6): 68-79. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY202106006.htm
    [16] 魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异: 以四川盆地焦石坝地区五峰组—龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm

    WEI Zhihong, WEI Xiangfeng. Comparison of gas-bearing pro-perty between different pore types of shale: a case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201406007.htm
    [17] 魏志红. 四川盆地及其周缘五峰组—龙马溪组页岩气的晚期逸散[J]. 石油与天然气地质, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm

    WEI Zhihong. Late fugitive emission of shale gas from Wufeng-Longmaxi formation in Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2015, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm
    [18] 彭女佳, 何生, 郝芳, 等. 川东南彭水地区五峰组—龙马溪组页岩孔隙结构及差异性[J]. 地球科学, 2017, 42(7): 1134-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707009.htm

    PENG Nvjia, HE Sheng, HAO Fang, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area, southeastern Sichuan[J]. Earth Science, 2017, 42(7): 1134-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707009.htm
    [19] 谷渊涛, 李晓霞, 万泉, 等. 泥页岩有机质孔隙差异特征及影响因素分析: 以我国典型海相、陆相、过渡相储层为例[J]. 沉积学报, 2021, 39(4): 794-810. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104002.htm

    GU Yuantao, LI Xiaoxia, WAN Quan, et al. On the different characteristics of organic pores in shale and their influencing factors: taking typical marine, continental, and transitional facies reservoirs in China as examples[J]. Acta Sedimentologica Sinica, 2021, 39(4): 794-810. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104002.htm
    [20] 腾格尔, 卢龙飞, 俞凌杰, 等. 页岩有机质孔隙形成、保持及其连通性的控制作用[J]. 石油勘探与开发, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm

    BORJIGIN Tenger, LU Longfei, YU Lingjie, et al. Formation, preservation and connectivity control of organic pores in shale[J]. Petroleum Exploration and Development, 2021, 48(4): 687-699. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104003.htm
    [21] 杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm

    YANG Xiya, LIU Chenglin, LIU Wenping, et al. Characteristics of and factors influencing organic pores in the Lower Silurian Longmaxi Formation, Fushun-Yongchuan area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6): 1321-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106007.htm
    [22] 刘贝. 泥页岩中有机质: 类型、热演化与有机孔隙[J/OL]. 地球科学, 2022. (2022-04-15). https://kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.

    LIU Bei. Organic matter in shales: types, thermal evolution, and organic pores[J/OL]. Earth Science, 2022. (2022-04-15). https://kns.cnki.net/kcms/detail/42.1874.P.20220414.0922.010.html.
    [23] 曹涛涛, 宋之光. 页岩有机质特征对有机孔发育及储层的影响[J]. 特种油气藏, 2016, 23(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201604002.htm

    CAO Taotao, SONG Zhiguang. Effects of organic matter properties on organic pore development and reservoir[J]. Special Oil & Gas Reservoirs, 2016, 23(4): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201604002.htm
    [24] 申宝剑, 仰云峰, 腾格尔, 等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰—龙马溪组为例[J]. 石油实验地质, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480

    SHEN Baojian, YANG Yunfeng, BORJIGIN Tenger, et al. Characte-ristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure, Sichuan Basin: a case study of the Wufeng-Longmaxi formations in well Jiaoye 1[J]. Petroleum Geology & Experiment, 2016, 38(4): 480-488. doi: 10.11781/sysydz201604480
    [25] 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J]. 石油勘探与开发, 2017, 44(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm

    BORJIGIN Tenger, SHEN Baojian, YU Lingjie, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701009.htm
    [26] TAN Jingqiang, HU Ruining, WANG Wenhui, et al. Palynological analysis of the Late Ordovician - Early Silurian black shales in South China provides new insights for the investigation of pore systems in shale gas reservoirs[J]. Marine and Petroleum Geology, 2020, 116: 104145.
    [27] 王晔, 邱楠生, 仰云峰, 等. 四川盆地五峰—龙马溪组页岩成熟度研究[J]. 地球科学, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm

    WANG Ye, QIU Nansheng, YANG Yunfeng, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science, 2019, 44(3): 953-971. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201903022.htm
    [28] ZHANG Wentao, HU Wenxuan, BORJIGIN T, et al. Pore characte-ristics of different organic matter in black shale: a case study of the Wufeng-Longmaxi formation in the southeast Sichuan Basin, China[J]. Marine and Petroleum Geology, 2020, 111: 33-43.
    [29] 朱炎铭, 张寒, 亢韦, 等. 中上扬子地区龙马溪组、筇竹寺组页岩有机质微孔缝特征: 生物发育与孔隙网络[J]. 天然气地球科学, 2015, 26(8): 1507-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508010.htm

    ZHU Yanming, ZHANG Han, KANG Wei, et al. Organic nanopores of Longmaxi and Qiongzhusi formations in the Upper Yangtze: biological precursor and pore network[J]. Natural Gas Geoscience, 2015, 26(8): 1507-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508010.htm
    [30] KO L T, LOUCKS R G, ZHANG Tongwei, et al. Pore and pore network evolution of Upper Cretaceous boquillas (Eagle Ford-equivalent) mudrocks: results from gold tube pyrolysis experiments[J]. AAPG Bulletin, 2016, 100(11): 1693-1722.
    [31] KO L T, RUPPEL S C, LOUCKS R G, et al. Pore-types and pore-network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian Barnett mudstones: insights from laboratory thermal maturation and organic petrology[J]. International Journal of Coal Geology, 2018, 190: 3-28.
    [32] 马中良, 郑伦举, 徐旭辉, 等. 富有机质页岩有机孔隙形成与演化的热模拟实验[J]. 石油学报, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm

    MA Zhongliang, ZHENG Lunju, XU Xuhui, et al. Thermal simulation experiment on the formation and evolution of organic pores in organic-rich shale[J]. Acta Petrolei Sinica, 2017, 38(1): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201701003.htm
    [33] GUO Huijuan, HE Ruliang, JIA Wanglu, et al. Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2018, 91: 279-296.
    [34] WU Songtao, ZHAI Xiufen, YANG Zhi, et al. Characterization of fracture formation in organic-rich shales: an experimental and real time study of the Permian Lucaogou Formation, Junggar Basin, northwestern China[J]. Marine and Petroleum Geology, 2019, 107: 397-406.
    [35] 李楚雄, 申宝剑, 潘安阳, 等. 波罗的海盆地上奥陶统页岩孔隙演化的热压模拟实验[J]. 石油实验地质, 2020, 42(3): 434-442. doi: 10.11781/sysydz202003434

    LI Chuxiong, SHEN Baojian, PAN Anyang, et al. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 434-442. doi: 10.11781/sysydz202003434
    [36] CAVELAN A, BOUSSAFIR M, LE MILBEAU C, et al. Effect of organic matter composition on source rock porosity during confined anhydrous thermal maturation: example of Kimmeridge-clay mudstones[J]. International Journal of Coal Geology, 2019, 212: 103236.
    [37] LIU Yuke, XIONG Yongqiang, LI Yun, et al. Effects of oil expulsion and pressure on nanopore development in highly mature shale: evidence from a pyrolysis study of the Eocene Maoming oil shale, South China[J]. Marine and Petroleum Geology, 2017, 86: 526-536.
    [38] 高之业, 范毓鹏, 胡钦红, 等. 川南地区龙马溪组页岩有机质孔隙差异化发育特征及其对储集空间的影响[J]. 石油科学通报, 2020, 5(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202001001.htm

    GAO Zhiye, FAN Yupeng, HU Qinhong, et al. Differential development characteristics of organic matter pores and their impact on reservoir space of Longmaxi Formation shale from the south Sichuan Basin[J]. Petroleum Science Bulletin, 2020, 5(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE202001001.htm
    [39] SHI Miao, YU Bingsong, ZHANG Jinchuan, et al. Evolution of organic pores in marine shales undergoing thermocompression: a simulation experiment using hydrocarbon generation and expulsion[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 406-413.
    [40] CHEN Ji, XIAO Xianming. Evolution of nanoporosity in organic-rich shales during thermal maturation[J]. Fuel, 2014, 129: 173-181.
    [41] 马中良, 申宝剑, 潘安阳, 等. 四川盆地五峰组—龙马溪组页岩气成因与碳同位素倒转机制: 来自热模拟实验的认识[J]. 石油实验地质, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428

    MA Zhongliang, SHEN Baojian, PAN Anyang, et al. Origin and carbon isotope reversal of shale gas in Wufeng-Longmaxi formations, Sichuan Basin: implication from pyrolysis experiments[J]. Petroleum Geology & Experiment, 2020, 42(3): 428-433. doi: 10.11781/sysydz202003428
    [42] GAI Haifeng, TIAN Hui, XIAO Xianming. Late gas generation potential for different types of shale source rocks: implications from pyrolysis experiments[J]. International Journal of Coal Geology, 2018, 193: 16-29.
    [43] LI Yifan, SCHIEBER J, FAN Tailiang, et al. Pore characterization and shale facies analysis of the Ordovician-Silurian transition of northern Guizhou, South China: the controls of shale facies on pore distribution[J]. Marine and Petroleum Geology, 2018, 92: 697-718.
    [44] MORGA R, PAWLYTA M. Microstructure of graptolite periderm in Silurian gas shales of northern Poland[J]. International Journal of Coal Geology, 2018, 189: 1-7.
    [45] LIU Bei, MASTALERZ M, SCHIEBER J. SEM petrography of dispersed organic matter in black shales: a review[J]. Earth-Science Reviews, 2022, 224: 103874, doi: 10.1016/j.earscirev.2021.103874.
    [46] LIU Bei, SCHIEBER J, MASTALERZ M. Combined SEM and reflected light petrography of organic matter in the new Albany shale (Devonian-Mississippian) in the Illinois Basin: a perspective on organic pore development with thermal maturation[J]. International Journal of Coal Geology, 2017, 184: 57-72.
    [47] LIU Bei, SCHIEBER J, MASTALERZ M. Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany shale during thermal maturation: implications for kerogen transformation[M]//CAMP W K, MILLIKEN K L, TAYLOR K, et al. Mudstone diagenesis: research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa: AAPG, 2020: 165-188.
    [48] 曹涛涛, 刘光祥, 曹清古, 等. 有机显微组成对泥页岩有机孔发育的影响: 以川东地区海陆过渡相龙潭组泥页岩为例[J]. 石油与天然气地质, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm

    CAO Taotao, LIU Guangxiang, CAO Qinggu, et al. Influence of maceral composition on organic pore development in shale: a case study of transitional Longtan Formation shale in eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(1): 40-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801006.htm
    [49] 贺儒良, 贾望鲁, 彭平安. 排—留烃过程对富有机质页岩纳米孔隙发育影响的热模拟实验研究[J]. 地球化学, 2018, 47(5): 575-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201805009.htm

    HE Ruliang, JIA Wanglu, PENG Ping'an. Influence of hydrocarbon expulsion and retention on the evolution of nanometer-scale pores in organic matter rich shale: an example from pyrolysis experiment[J]. Geochimica, 2018, 47(5): 575-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201805009.htm
    [50] 张建坤, 何生, 颜新林, 等. 页岩纳米级孔隙结构特征及热成熟演化[J]. 中国石油大学学报(自然科学版), 2017, 41(1): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201701002.htm

    ZHANG Jiankun, HE Sheng, YAN, Xinlin, et al. Structural characteristics and thermal evolution of nanoporosity in shales[J]. Journal of China University of Petroleum, 2017, 41(1): 11-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201701002.htm
    [51] CAO Taotao, DENG Mo, CAO Qinggu, et al. Pore formation and evolution of organic-rich shale during the entire hydrocarbon generation process: examination of artificially and naturally matured samples[J]. Journal of Natural Gas Science and Engineering, 2021, 93: 104020.
    [52] 邱振, 邹才能, 李熙喆, 等. 论笔石对页岩气源储的贡献: 以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm

    QIU Zhen, ZOU Caineng, LI Xizhe, et al. Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale: a case study of the Wufeng-Longmaxi formations in South China[J]. Natural Gas Geoscience, 2018, 29(5): 606-615. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201805002.htm
  • 加载中
图(4)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  94
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2023-06-16
  • 刊出日期:  2023-09-28

目录

    /

    返回文章
    返回