Progress and development suggestions of deep normal pressure shale gas engineering technology
-
摘要: 与中浅层页岩气勘探开发相比,深层页岩气埋藏深、构造复杂、压力体系多变,钻井提速难;储层可压性差、体积改造难。如何提高钻完井效率、降低钻完井成本,是实现深层页岩气经济效益开发最大的挑战。为明确当前深层常压页岩气钻完井技术水平和存在的问题,总结分析国内外深层页岩气钻完井工程新进展,指出了当前存在的问题并提出了发展建议。在四川盆地威荣、永川等区块已经实现了深层常压页岩气的经济效益开发,基本形成了以低成本高性能油基钻井液、强化钻井参数、配套大扭矩螺杆和个性化钻头、长水平井精准导向和高效控制、钻井实时监测与智能优化为核心的深层页岩气长水平井高效钻井技术体系,水平段最长长度达4 386 m,最长一趟钻进尺达4 225 m。但与北美地区先进钻井指标相比,国产螺杆寿命、旋转导向工具稳定性和可靠性、超级一趟钻技术与比率、近钻头推靠工具还存在一定差距,需进一步加大核心配套工具和技术研发,进一步提高深层页岩气井的钻井效率。北美地区受经济开发效益限制而较少开发4 200 m以深的深层页岩气,国内已经突破了4 700 m深层页岩气体积压裂技术,形成了以压裂工艺、分段工具、主体材料和监测技术为核心的独立自主的4 700 m以浅深层页岩气压裂技术体系。但在复杂构造区深层和超深层页岩储层中形成复杂裂缝网难度大,还需进一步完善裂缝扩展机理研究,研发降阻性能更好的压裂液体系和175 MPa压裂装备,以尽快突破4 700~6 000 m埋深页岩气井高效压裂瓶颈。
-
关键词:
- 深层页岩气 /
- 超级一趟钻 /
- 体积压裂 /
- 175 MPa压裂装备
Abstract: Compared with the exploration and development of medium-shallow shale gas, deep shale gas is deeply buried, with complex structures and variable pressure systems, making it difficult to increase drilling speed. The reservoirs are of poor compressibility and it is difficult to transform the volume. How to improve drilling and completion efficiency and reduce drilling and completion costs is the largest challenge in achieving the economic benefits of deep shale gas development. In order to clarify the current technical level and existing problems of deep normal pressure shale gas drilling and completion, the technical indicators and progress of deep shale gas in drilling and completion engineering at home and abroad are summarized and analyzed in this paper and it points out the existing problems and puts forward suggestions. SINOPEC has realized the economic benefit development of deep normal pressure shale gas in blocks such as Weirong and Yongchuan and has basically formed a high-efficiency drilling technology system for long horizontal wells with low-cost high-performance oil-based drilling fluid, enhanced drilling parameters, high-torque positive displacement motor, personalized drill bit, precise guidance and efficient control of long horizontal wells, real-time drilling monitoring and intelligent optimization technology as the core. The maximum horizontal section length and one-trip footage have been extended to 4 386 m and 4 225 m respectively. However, compared with the advanced records in North America, there is still a certain gap between the life of positive displacement motor, stability and reliability of rotary steering tools, super one-trip drilling technology and ratio, and near-bit push tools. Therefore, it is necessary to research and develop the core tools to further improve the drilling efficiency. Due to the limitation of economic development benefits, the deve-lopment of deep shale gas in North America is less than 4 200 m. In China, we have broken through the 4 700 m deep shale gas fracturing technology and formed an independent 4 700 m deep shale gas fracturing technology system with fracturing technology, segmented tools, main materials, and monitoring technology as the core. However, for deep and ultra-deep shale in complex structural areas, it is difficult to form complex fracture nets. It is extremely necessary to further improve the fracture propagation mechanism, develop a fracturing fluid system with better drag reduction and 175 MPa fracturing equipment to break through the bottleneck of efficient fracturing technology for 4 700-6 000 m shale gas. -
表 1 北美页岩气工程概况
Table 1. Overview of shale gas drilling engineering in North America
项目 区块 Eagle Ford Haynesville Cana Woodford 垂深/m 1 200~4 300 3 200~4 900 1 000~5 000 水平段长/m 1 000~3 500 1 000~3 500 1 000~3 500 压力系数 1.35~1.80 1.80~2.00 1.58 钻井周期/d 7~35 18~28.8 20~25 水平井/百万美元成本 6.9~7.7 7.4~9.5 7.5~10.0 表 2 典型深层页岩区块地质特征参数对比
Table 2. Comparison of geological characteristic parameters of typical deep shale blocks
项目 区块 白马(JY7HF井) 丁山(DY2HF井) 威荣(WY1HF井) 永川(YY1HF井) Cana Woodford Haynesville 深度/m 3 903 4 363 3 587 3 988 4 115 3 658 优质页岩厚度/m 49.5 33 27.5 30 50 45 孔隙度/% 3.12 5.81 4.01 5.3 6.5 10 ω(TOC)/% 2.84 3.65 3.2 5.57 9 4 含气性/(m3/t) 4.52 4.48 3.3~6.47 6.79 12 地层压力系数 1.38 1.55 1.96 1.70 1.58 1.90 脆性指数/% 55 45 46 50 60 杨氏模量/103 MPa 36.7 32.32 33.84 31.45 34 18 泊松比 0.22 0.2 0.237 0.228 0.18 0.27 两向水平主地应力差/MPa 13 18 14 16 6 8 应力梯度/(MPa/m) 0.022 0.023 0.023 0.022 5 0.02 0.022 6 地表条件 山地 山地 山地 山地 平原 平原 -
[1] 郭彤楼. 深层页岩气勘探开发进展与攻关方向[J]. 油气藏评价与开发, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htmGUO Tonglou. Progress and research direction of deep shale gas exploration and development[J]. Reservoir Evaluation and Development, 2021, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm [2] 郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837GUO Tonglou, JIANG Shu, ZHANG Peixian, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 837-845. doi: 10.11781/sysydz202005837 [3] 何治亮, 聂海宽, 胡东风, 等. 深层页岩气有效开发中的地质问题: 以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htmHE Zhiliang, NIE Haikuan, HU Dongfeng, et al. Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formations in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2020, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm [4] 杨振恒, 陶国亮, 鲍云杰, 等. 南方海相深层页岩气储集空间差异化发育及保持机理探讨[J]. 石油实验地质, 2022, 44(5): 845-853. doi: 10.11781/sysydz202205845YANG Zhenheng, TAO Guoliang, BAO Yunjie, et al. Differential development and maintenance mechanism of reservoir space for marine shale gas in South China's deep strata[J]. Petroleum Geology & Experiment, 2022, 44(5): 845-853. doi: 10.11781/sysydz202205845 [5] 蔡勋育, 赵培荣, 高波, 等. 中国石化页岩气"十三五"发展成果与展望[J]. 石油与天然气地质, 2021, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htmCAI Xunyu, ZHAO Peirong, GAO Bo, et al. SINOPEC's shale gas development achievements during the "Thirteenth Five-Year Plan" period and outlook for the future[J]. Oil & Gas Geology, 2021, 42(1): 16-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101003.htm [6] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htmZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm [7] 何骁, 李武广, 党录瑞, 等. 深层页岩气开发关键技术难点与攻关方向[J]. 天然气工业, 2021, 41(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101017.htmHE Xiao, LI Wuguang, DANG Lurui, et al. Key technological challenges and research directions of deep shale gas development[J]. Natural Gas Industry, 2021, 41(1): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101017.htm [8] 李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001005.htmLI Yang, XUE Zhaojie, CHENG Zhe, et al. Progress and deve-lopment directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration, 2020, 25(1): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001005.htm [9] 王世谦. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 2017, 37(6): 115-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201706025.htmWANG Shiqian. Shale gas exploitation: status, issues and prospects[J]. Natural Gas Industry, 2017, 37(6): 115-130. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201706025.htm [10] 樊好福, 臧艳彬, 张金成, 等. 深层页岩气钻井技术难点与对策[J]. 钻采工艺, 2019, 42(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201903008.htmFAN Haofu, ZANG Yanbin, ZHANG Jincheng, et al. Technical difficulties and countermeasures of deep shale gas drilling[J]. Drilling & Production Technology, 2019, 42(3): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201903008.htm [11] 祝效华, 李瑞, 刘伟吉, 等. 深层页岩气水平井高效破岩提速技术发展现状[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202304001.htmZHU Xiaohua, LI Rui, LIU Weiji, et al. Development status of high-efficiency rock-breaking and speed-increasing technologies for deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(4): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202304001.htm [12] 于荣泽, 常程, 张晓伟, 等. Haynesville深层高温高压页岩气藏开发模式及启示[J]. 矿产勘查, 2022, 13(5): 700-710. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202205019.htmYU Rongze, CHANG Cheng, ZHANG Xiaowei, et al. Development of deep high pressure-temperature Haynesville shale gas play and implications[J]. Mineral Exploration, 2022, 13(5): 700-710. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202205019.htm [13] 于荣泽, 王成浩, 张晓伟, 等. 北美Eagle Ford深层页岩气藏开发特征及启示[J]. 煤田地质与勘探, 2022, 50(9): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202209004.htmYU Rongze, WANG Chenghao, ZHANG Xiaowei, et al. Development characteristics and enlightenment of Eagle Ford deep shale gas reservoirs in North America[J]. Coal Geology & Exploration, 2022, 50(9): 32-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202209004.htm [14] 吴鹏程, 汪瑶, 付利, 等. 深层页岩气水平井"一趟钻"技术探索与实践[J]. 石油机械, 2023, 51(8): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202308004.htmWU Pengcheng, WANG Yao, FU Li, et al. Exploration and practice of "One Trip" technology for deep shale gas horizontal wells[J]. China Petroleum Machinery, 2023, 51(8): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202308004.htm [15] 石钻. 斯伦贝谢公司推出水平井一趟钻钻头导向系统[J]. 石油钻探技术, 2019, 47(6): 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906016.htmSHI Zuan. Schlumberger launches a horizontal well drill bit guidance system[J]. Petroleum Drilling Techniques, 2019, 47(6): 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201906016.htm [16] 张东海, 王昌荣. 智能石油钻机技术现状及发展方向[J]. 石油机械, 2020, 48(7): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202007006.htmZHANG Donghai, WANG Changrong. Technology status and deve-lopment trend of intelligent drilling rigs[J]. China Petroleum Machinery, 2020, 48(7): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJI202007006.htm [17] 吕凤军, 苏兴华, 李宝宝. 数字化转型视角下钻井企业数字文化建设实践与思考[J]. 中国石油企业, 2022(11): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202211025.htmLV Fengjun, SU Xinghua, LI Baobao. Practice and reflection on digital culture construction of drilling enterprises from the perspective of digital transformation[J]. Chinese Petroleum Enterprises, 2022(11): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202211025.htm [18] HAQUE M H, SAINI R K, SAYED M A. Nano-composite resin coated proppant for hydraulic fracturing[C]//Presented at the Offshore Technology Conference. Houston, USA: Offshore Technology Conference, 2019. [19] 毛峥, 李亭, 刘德华, 等. 纳米材料在水力压裂中的应用研究进展[J]. 应用化工, 2022, 51(9): 2681-2688. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202209038.htmMAO Zheng, LI Ting, LIU Dehua, et al. Research progress on the application of nanomaterials in hydraulic fracturing[J]. Applied Chemical Industry, 2022, 51(9): 2681-2688. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202209038.htm [20] UGUETO G A, WOJTASZEK M, MONDAL S, et al. New fracture diagnostic tool for unconventionals: high-resolution distributed strain sensing via Rayleigh frequency shift during production in hydraulic fracture test 2[C]//The SPE/AAPG/SEG Unconventional Resources Technology Conference. Houston, USA: Unconventional Resources Technology Conference, 2021. [21] 陈铭, 郭天魁, 胥云, 等. 水平井压裂多裂缝扩展诱发光纤应变演化机理[J]. 石油勘探与开发, 2022, 49(1): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201017.htmCHEN Ming, GUO Tiankui, XU Yun, et al. Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells[J]. Petroleum Exploration & Development, 2022, 49(1): 183-193. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201017.htm [22] NADER L, BIDDICK D, ARTINIAN H, et al. Liquid removal to improve gas production and recoverable reserves in unconventional liquid-rich reservoirs by subsurface wet gas compression[C]//The SPE Artificial Lift Conference and Exhibition-Americas. Woodlands, USA: Society of Petroleum Engineers, 2020. [23] 兰凯, 董成林, 李光泉, 等. 威荣深层页岩气田水平段安全提速技术对策[J]. 断块油气田, 2023, 30(3): 505-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303019.htmLAN Kai, DONG Chenglin, LI Guangquan, et al. Technical strategy to enhance drilling speed safely of horizontal section for deep shale gas field in Weiyuan-Rongchang block[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 505-510. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202303019.htm [24] 刘伟, 朱礼平, 潘登雷, 等. WR气田深层页岩气钻井提速提效实践与认识[J]. 天然气技术与经济, 2022, 16(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ202203012.htmLIU Wei, ZHU Liping, PAN Denglei, et al. Improving ROP and drilling efficiency in shale gas wells, WR gasfield[J]. Natural Gas Technology and Economy, 2022, 16(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ202203012.htm [25] 贾利春, 李枝林, 张继川, 等. 川南海相深层页岩气水平井钻井关键技术与实践[J]. 石油钻采工艺, 2022, 44(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202202002.htmJIA Lichun, LI Zhilin, ZHANG Jichuan, et al. Key technology and practice of horizontal drilling for marine deep shale gas in southern Sichuan Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 145-152. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC202202002.htm
计量
- 文章访问数: 422
- HTML全文浏览量: 192
- PDF下载量: 54
- 被引次数: 0