留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献

徐勤琪 储呈林 郭小文 刘永立 张黎 罗明霞

徐勤琪, 储呈林, 郭小文, 刘永立, 张黎, 罗明霞. 塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献[J]. 石油实验地质, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111
引用本文: 徐勤琪, 储呈林, 郭小文, 刘永立, 张黎, 罗明霞. 塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献[J]. 石油实验地质, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111
XU Qinqi, CHU Chenglin, GUO Xiaowen, LIU Yongli, ZHANG Li, LUO Mingxia. Geochemical characteristics of crude oil and contributions to hydrocarbon accumulation in multiple stages in Tahe subsalt area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111
Citation: XU Qinqi, CHU Chenglin, GUO Xiaowen, LIU Yongli, ZHANG Li, LUO Mingxia. Geochemical characteristics of crude oil and contributions to hydrocarbon accumulation in multiple stages in Tahe subsalt area[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(1): 111-123. doi: 10.11781/sysydz202401111

塔河油田盐下地区原油地球化学特征及不同期次油气成藏贡献

doi: 10.11781/sysydz202401111
基金项目: 

中国石化科技部项目“塔北奥陶系油气富集规律与增储目标评价” P21048-3

详细信息
    作者简介:

    徐勤琪(1985-), 男, 副研究员, 从事石油地质、油气成藏研究。E-mail: xuqq.xbsj@sinopec.com

  • 中图分类号: TE122.11

Geochemical characteristics of crude oil and contributions to hydrocarbon accumulation in multiple stages in Tahe subsalt area

  • 摘要: 对于多旋回叠合盆地,油气藏形成的过程往往伴随着多期次的原油充注,但并非每一期原油充注都对现今油藏形成起到关键作用。流体包裹体方法只能对原油充注期次和时间进行限定,而无法确定各期充注原油对油藏的贡献。针对上述问题,以塔河油田盐下地区奥陶系碳酸盐岩油藏为例,采用原油地球化学、流体包裹体法、荧光光谱和单井模拟分析方法,系统揭示了研究区原油的荧光特征、油气成藏期次和成藏时间。原油生物标志化合物参数分析结果表明,其母质相同且沉积于海相弱还原环境,再通过与研究区烃源岩进行油源对比,确定了原油均来自下寒武统玉尔吐斯组烃源岩。原油芳烃中甲基菲指数和二苯并噻吩参数是定量评价原油成熟度的有效指标,计算得到塔河油田盐下地区原油成熟度(Ro)在0.90%~1.47%之间,可能对应了多期油气充注。此外,在对盐下地区奥陶系储层油包裹体荧光光谱分析、共生盐水包裹体测温和测盐的基础上,结合单井埋藏史和热史模拟,确定盐下地区存在加里东中期(420 Ma)、海西中期(318 Ma)和喜马拉雅晚期(10 Ma)3期原油充注。对比原油和3期油包裹体荧光光谱参数,认为喜马拉雅晚期是盐下地区的主成藏期,为盐下地区的奥陶系油藏贡献了最多的原油。

     

  • 图  1  塔河油田盐下地区取样井分布

    Figure  1.  Locations of sampling wells in Tahe subsalt area

    图  2  塔河油田盐下地区原油饱和烃色谱—质谱图

    Figure  2.  Chromatography-mass spectra of saturated hydrocarbon of crude oil from Tahe subsalt area

    图  3  塔河油田盐下地区原油地球化学特征

    LT1井数据引自文献[47]。

    Figure  3.  Geochemical features of crude oil from Tahe subsalt area

    图  4  塔河油田盐下地区原油芳烃参数特征

    Figure  4.  Cross plots of aromatic hydrocarbon parameters in Tahe subsalt area

    图  5  塔河油田盐下地区原油和油包裹体荧光光谱参数相关图

    Figure  5.  Fluorescence spectrum parameters of crude oil and oil inclusions in Tahe subsalt area

    图  6  塔河油田盐下地区方解石脉中典型油包裹体照片

    a.AT25井,O2yj,6 524.70 m,方解石脉中孤立分布的原生油包裹体,椭圆形,透射光;b.a的荧光照片,油包裹体发浅黄色荧光;c.S118井,O2yj,5 952.00 m,裂缝方解石脉体中的次生油包裹体,椭圆形,透射光;d.c的荧光照片,油包裹体发黄色荧光;e.AT25井,O2yj,6 524.70 m,巨晶方解石脉体中的两相次生油包裹体,椭圆形,透射光;f.e的荧光照片,油包裹体发蓝色荧光;g.S118井,O2yj,5 920.00 m,方解石脉体中串珠状分布的次生油包裹体,透射光;h.g的荧光照片,油包裹体发蓝色荧光;i.AT5井,O2yj,6 524.70 m,方解石脉体中的原生油包裹体,油包裹体整体透明,透射光;j.i的荧光照片,油包裹体发蓝色荧光;k.AT5井,O2yj,6 524.70 m,方解石脉体中的次生凝析气包裹体,包裹体的气泡体积较大,整体透明,透射光;l.k的荧光照片,凝析气包裹体发蓝色荧光。

    Figure  6.  Photographs of typical oil inclusions in calcite veins in Tahe subsalt area

    图  7  塔河油田盐下地区重点井盐水包裹体均一温度分布直方图及均一温度—盐度关系

    Figure  7.  Distribution of homogenization temperature and relationship between homogenization temperature and salinity for aqueous inclusions associated with oil inclusions developed in carbonatite samples from typical wells of Tahe subsalt area

    图  8  塔河油田盐下地区TS1井单井模拟及流体包裹体均一温度—埋藏史投影示意

    Figure  8.  Single well simulation of well TS1 and burial curves projected with homogenization temperatures of fluid inclusions in Tahe subsalt area

    表  1  塔河油田盐下地区原油部分生物标志化合物参数

    Table  1.   Part of biomarker parameters of crude oil from Tahe subsalt area

    井号 层位 深度/m 类型 ETR (C19+C20TT)/(C23+C24TT) C24TeT/(C26TT+C24TeT) C19TT/C23TT Pr/Ph Ph/nC18 Pr/nC17 C2720R/% C2820R/% C2920R/%
    AT31 O2yj 5 748~5 890 中质油 0.74 0.70 0.30 0.17 0.58 0.46 0.26 25.40 25.66 48.94
    T913 O2yj 5 970~6 050 轻质油 0.80 0.43 0.30 0.17 1.68 0.09 0.16 20.95 26.87 52.18
    AT40 O2yj 7 106~7 257 凝析油 0.75 0.27 0.32 0.20 0.40 0.71 0.23 35.69 26.68 37.63
    AT17 O2yj 6 375~6 440 轻质油 0.90 0.94 0.34 0.48 0.58 0.18 0.09 23.20 34.90 41.90
    AT5 O2yj 6 555~6 595 凝析油 0.69 0.54 0.36 0.35 0.61 0.34 0.17 24.49 32.13 43.38
    S47 O1-2y 5 346~5 369 重质油 0.71 0.53 0.35 0.21 0.77 0.27 0.20 17.96 29.24 52.80
    T903 T2a 4 612~4 615 中质油 0.70 0.80 0.30 0.17 0.52 0.40 0.17 19.92 30.77 49.31
    AT27X O2yj 6 867~6 996 轻质油 0.79 0.31 0.31 0.29 0.45 0.43 0.18 39.47 22.43 38.10
    TK494 O1-2y 5 419~5 499 重质油 0.80 0.44 0.28 0.37 0.58 0.28 0.15 38.71 20.67 40.62
    TK915 O2yj 5 545~5 760 轻质油 0.73 0.24 0.33 0.24 0.24 0.62 0.15 42.48 22.51 35.01
    TK915-12 O2yj 5 913~6 110 轻质油 0.78 0.43 0.31 0.18 0.45 0.31 0.12 38.19 18.02 43.78
    AT37 O2yj 6 071~6 170 轻质油 0.63 0.93 0.26 0.32 0.35 0.27 0.09 32.24 31.58 36.17
    TK915-2 O2yj 5 926~6 007 轻质油 0.73 0.59 0.29 0.17 0.34 0.52 0.13 26.60 14.26 59.14
    AT21X O2yj 6 408~6 460 轻质油 0.76 0.58 0.30 0.19 0.33 0.55 0.13 23.02 19.44 57.54
    AT16 O2yj 6 553~6 647 轻质油 0.74 0.60 0.31 0.15 0.35 0.19 0.07 30.78 19.65 49.57
    AT18 O2yj 6 574~6 612 轻质油 0.79 0.43 0.47 0.47 0.35 0.19 0.06 27.75 17.23 55.02
    AT20 O2yj 6 100~6 130 轻质油 0.81 0.85 0.42 0.42 0.27 0.40 0.08 35.17 15.54 49.30
    AT22 O2yj 6 271~6 404 轻质油 0.80 0.59 0.46 0.54 0.38 0.62 0.17 29.32 15.36 55.32
    AT24X O2yj 6 060~6 175 轻质油 0.63 0.93 0.42 0.29 0.52 0.47 0.21 24.05 16.33 59.63
    AT11 T2a 4 167~4 167 轻质油 0.81 0.26 0.41 0.11 0.54 0.37 0.18 27.21 13.17 59.62
    下载: 导出CSV

    表  2  塔河油田盐下地区原油芳烃成熟度参数

    Table  2.   Aromatic geochemical parameters of crude oil from Tahe subsalt area

    井名 层位 深度/m MPI-1 MPI-2 TMNR TeMNR 4-MDBT/1-MDBT MDBI K2, 4 K4, 6 TNR-1 TNR-2 F1 F2
    AT31 O2yj 5 748~5 890 0.78 0.92 0.73 0.77 5.76 0.66 1.25 2.72 0.83 0.72 0.41 0.26
    T913 O2yj 5 970~6 050 0.56 0.61 0.93 0.95 25.17 0.79 2.01 5.67 1.28 0.82 0.53 0.30
    AT40 O2yj 7 106~7 257 1.32 1.50 0.80 0.83 35.24 0.72 3.64 8.19 1.36 0.92 0.54 0.31
    AT17 O2yj 6 375~6 440 0.73 0.86 0.75 0.81 9.45 0.59 2.21 4.98 0.85 0.74 0.56 0.30
    AT5 O2yj 6 555~6 595 1.09 1.27 0.83 0.89 3.15 0.55 2.21 4.98 1.28 0.82 0.51 0.29
    S47 O1-2y 5 346~5 369 0.94 1.07 0.79 0.88 9.52 0.65 1.52 3.33 1.25 0.85 0.35 0.19
    T903 T2a 4 612~4 615 0.60 0.69 0.67 0.74 4.97 0.54 1.03 2.61 0.82 0.70 0.37 0.22
    AT27X O2yj 6 867~6 996 0.83 0.98 0.68 0.74 6.70 0.65 1.48 3.82 0.92 0.74 0.45 0.25
    TK494 O1-2y 5 419~5 499 0.46 0.50 0.59 0.67 2.71 0.43 1.01 2.34 0.56 0.57 0.32 0.18
    TK915 O2yj 5 545~5 760 1.25 1.47 0.95 0.96 39.77 0.61 2.84 7.27 1.49 1.09 0.67 0.35
    TK915-12 O2yj 5 913~6 110 0.82 0.98 0.61 0.64 8.75 0.59 1.61 4.06 1.01 0.78 0.46 0.28
    AT37 O2yj 6 071~6 170 0.74 0.88 0.81 0.82 3.15 0.55 1.39 3.32 0.91 0.76 0.44 0.26
    TK915-2 O2yj 5 926~6 007 0.60 0.68 0.68 0.71 17.58 0.73 1.08 2.53 0.68 0.66 0.47 0.27
    AT21X O2yj 6 408~6 460 0.61 0.70 0.68 0.70 3.68 0.46 1.79 4.77 0.66 0.64 0.37 0.20
    AT16 O2yj 6 553~6 647 0.79 0.92 0.79 0.85 3.13 0.55 2.15 5.53 0.85 0.74 0.46 0.26
    AT18 O2yj 6 574~6 612 0.71 0.81 0.82 0.87 12.56 0.69 1.14 2.79 0.86 0.74 0.45 0.25
    AT20 O2yj 6 100~6 130 0.77 0.87 0.82 0.88 6.70 0.65 2.25 5.74 0.91 0.76 0.55 0.30
    AT22 O2yj 6 271~6 404 0.71 0.82 0.66 0.81 35.24 0.72 1.48 3.90 0.98 0.72 0.42 0.24
    AT24X O2yj 6 060~6 175 0.64 0.73 0.67 0.79 3.15 0.55 1.39 3.54 0.75 0.66 0.40 0.23
    AT11 T2a 4 167~4 167 0.91 1.00 0.64 0.64 6.33 0.56 1.09 2.80 1.36 0.92 0.48 0.26
    下载: 导出CSV
  • [1] 王飞宇, 金之钧, 吕修祥, 等. 含油气盆地成藏期分析理论和新方法[J]. 地球科学进展, 2002, 17(5): 754-762.

    WANG Feiyu, JIN Zhijun, LÜ Xiuxiang, et al. Timing of petroleum accumulation: theory and new methods[J]. Advances in Earth Science, 2002, 17(5): 754-762.
    [2] 赵孟军, 宋岩, 潘文庆, 等. 沉积盆地油气成藏期研究及成藏过程综合分析方法[J]. 地球科学进展, 2004, 19(6): 939-946.

    ZHAO Mengjun, SONG Yan, PAN Wenqing, et al. The overall approach of hydrocarbon filling periods and process in sedimentary basins[J]. Advances in Earth Science, 2004, 19(6): 939-946.
    [3] 吕海涛, 张达景, 杨迎春. 塔河油田奥陶系油藏古岩溶表生作用期次划分[J]. 地质科技情报, 2009, 28(6): 71-75. doi: 10.3969/j.issn.1000-7849.2009.06.011

    LÜ Haitao, ZHANG Dajing, YANG Yingchun. Stages of paleokarstic hypergenesis in Ordovician reservoir, Tahe Oilfield[J]. Geological Science and Technology Information, 2009, 28(6): 71-75. doi: 10.3969/j.issn.1000-7849.2009.06.011
    [4] 王斌, 杨毅, 曹自成, 等. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义[J]. 地球科学, 2021, 46(9): 3203-3216.

    WANG Bin, YANG Yi, CAO Zicheng, et al. U-Pb dating of calcite veins developed in the Middle-Lower Ordovician reservoirs in Tahe Oilfield and its petroleum geologic significance in Tahe Oilfield[J]. Earth Science, 2021, 46(9): 3203-3216.
    [5] 金之钧, 刘全有, 云金表, 等. 塔里木盆地环满加尔凹陷油气来源与勘探方向[J]. 中国科学: 地球科学, 2017, 47(3): 310-320.

    JIN Zhijun, LIU Quanyou, YUN Jinbiao, et al. Potential petroleum sources and exploration directions around the Manjar Sag in the Tarim Basin[J]. Science China Earth Sciences, 2017, 60(2): 235-245.
    [6] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.

    ZHAO Jingzhou. Geochronology of petroleum accumulation: new advances and the future trend[J]. Advances in Earth Science, 2002, 17(3): 378-383.
    [7] 徐豪, 郭小文, 曹自成, 等. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据[J]. 地球科学, 2021, 46(10): 3535-3548.

    XU Hao, GUO Xiaowen, CAO Zicheng, et al. Application of minimum homogenization temperatures of aqueous inclusions in calcite veins to determine time of hydrocarbon accumulation in Ordovician of Tahe Oilfield: evidence from in-situ calcite U-Pb dating by laser ablation[J]. Earth Science, 2021, 46(10): 3535-3548.
    [8] 金之钧. 中国典型叠合盆地油气成藏研究新进展(之二): 以塔里木盆地为例[J]. 石油与天然气地质, 2006, 27(3): 281-288.

    JIN Zhijun. New progresses in research of China's typical superimposed basins and reservoiring of hydrocarbons (Part Ⅱ): taking Tarim Basin as an example[J]. Oil & Gas Geology, 2006, 27(3): 281-288.
    [9] 陈红汉, 李纯泉, 张希明, 等. 运用流体包裹体确定塔河油田油气成藏期次及主成藏期[J]. 地学前缘, 2003, 10(1): 190.

    CHEN Honghan, LI Chunquan, ZHANG Ximing, et al. Determine accumulation period and the main reservoir in Tahe Oilfield by using fluid inclusions[J]. Earth Science Frontiers, 2003, 10(1): 190.
    [10] 支东明, 曹剑, 张景坤, 等. 新疆北部油气晚期成藏特征与分布规律[J]. 石油与天然气地质, 2022, 43(3): 542-552.

    ZHI Dongming, CAO Jian, ZHANG Jingkun, et al. Characteristics and distribution pattern of late hydrocarbon accumulation in northern Xinjiang, China[J]. Oil & Gas Geology, 2022, 43(3): 542-552.
    [11] 卞保力, 刘海磊, 蒋中发, 等. 玛南斜坡风城组油气成藏条件及主控因素[J]. 西南石油大学学报(自然科学版), 2023, 45(4): 72-84.

    BIAN Baoli, LIU Hailei, JIANG Zhongfa, et al. Accumulation conditions and main controlling factors of Fengcheng Formation reservoirs in the south slope of Mahu Sag[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 72-84.
    [12] 文璠, 罗群, 董雄英, 等. 断陷盆地顺向断阶带油气充注期次与成藏模式: 以渤海湾盆地歧口凹陷埕北断阶带为例[J]. 石油实验地质, 2023, 45(4): 797-808. doi: 10.11781/sysydz202304797

    WEN Fan, LUO Qun, DONG Xiongying, et al. Hydrocarbon charging stage and accumulation mode of forward fault step zone in fault basin: taking the Chengbei fault step zone in Qikou Sag, Bohai Bay Basin as an example[J]. Petroleum Geology & Experiment, 2023, 45(4): 797-808. doi: 10.11781/sysydz202304797
    [13] 平宏伟, 陈红汉, 宋国奇, 等. 油气充注成藏贡献度及其意义[J]. 地球科学(中国地质大学学报), 2012, 37(1): 163-170.

    PING Hongwei, CHEN Honghan, SONG Guoqi, et al. Contributions degree of petroleum charging to oil and gas accumulation and its significance[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(1): 163-170.
    [14] 刘可禹, BOURDET J, 张宝收, 等. 应用流体包裹体研究油气成藏: 以塔中奥陶系储集层为例[J]. 石油勘探与开发, 2013, 40(2): 171-180.

    LIU Keyu, BOURDET J, ZHANG Baoshou, et al. Hydrocarbon charge history of the Tazhong Ordovician reservoirs, Tarim Basin as revealed from an integrated fluid inclusion study[J]. Petroleum Exploration and Development, 2013, 40(2): 171-180.
    [15] 漆立新, 丁勇. 塔里木盆地顺北地区东西部海相油气成藏差异[J]. 石油实验地质, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020

    QI Lixin, DING Yong. Differences in marine hydrocarbon accumulation between the eastern and western parts of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 20-28. doi: 10.11781/sysydz202301020
    [16] 郑见超, 李斌, 袁倩, 等. 塔里木盆地巴楚—塔北地区深层寒武系油气成藏过程与勘探方向[J]. 石油与天然气地质, 2022, 43(1): 79-91.

    ZHENG Jianchao, LI Bin, YUAN Qian, et al. Hydrocarbon accumulation process and exploration direction of the deep Cambrian in Bachu-Tabei area, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(1): 79-91.
    [17] 常象春, 林玉祥, 郭海花, 等. 混合原油的地球化学特征及成藏贡献率[J]. 地质科技情报, 2007, 26(2): 75-80.

    CHANG Xiangchun, LIN Yuxiang, GUO Haihua, et al. Geochemistry and individual contribution ratio of mixed crude oils[J]. Geological Science and Technology Information, 2007, 26(2): 75-80.
    [18] 李水福, 何生, 张刚庆, 等. 混源油研究综述[J]. 地质科技情报, 2008, 27(1): 77-79.

    LI Shuifu, HE Sheng, ZHANG Gangqing, et al. Review of mixed crude oils[J]. Geological Science and Technology Information, 2008, 27(1): 77-79.
    [19] 李素梅, 庞雄奇, 金之钧, 等. 苏北金湖凹陷混合原油的地质地球化学特征[J]. 石油大学学报(自然科学版), 2002, 26(1): 11-15.

    LI Sumei, PANG Xiongqi, JIN Zhijun, et al. Geochemical characte-ristics of the mixed oil in Jinhu Sag of Subei Basin[J]. Journal of the University of Petroleum, China, 2002, 26(1): 11-15.
    [20] 王铁冠, 王春江, 何发岐, 等. 塔河油田奥陶系油藏两期成藏原油充注比率测算方法[J]. 石油实验地质, 2004, 26(1): 74-79. doi: 10.11781/sysydz200401074

    WANG Tieguan, WANG Chunjiang, HE Faqi, et al. Determination of double filling ratio of mixed crude oils in the Ordovician oil reservoir, Tahe Oilfield[J]. Petroleum Geology & Experiment, 2004, 26(1): 74-79. doi: 10.11781/sysydz200401074
    [21] 陈红汉. 单个油包裹体显微荧光特性与热成熟度评价[J]. 石油学报, 2014, 35(3): 584-590.

    CHEN Honghan. Microspectrofluorimetric characterization and thermal maturity assessment of individual oil inclusion[J]. Acta Petrolei Sinica, 2014, 35(3): 584-590.
    [22] 饶丹, 秦建中, 许锦, 等. 塔河油田奥陶系油藏成藏期次研究[J]. 石油实验地质, 2014, 36(1): 83-88. doi: 10.11781/sysydz201401083

    RAO Dan, QIN Jianzhong, XU Jin, et al. Accumulation periods of Ordovician reservoirs in Tahe Oil Field[J]. Petroleum Geology & Experiment, 2014, 36(1): 83-88. doi: 10.11781/sysydz201401083
    [23] 李纯泉, 陈红汉, 陈汉林. 塔河油田奥陶系有机包裹体的油气指示意义[J]. 天然气工业, 2004, 24(10): 24-26.

    LI Chunquan, CHEN Honghan, CHEN Hanlin. Hydrocarbon indicator significance of organic inclusions in the Ordovician reservoir in Tahe Oil Field[J]. Natural Gas Industry, 2004, 24(10): 24-26.
    [24] 张芷晴, 刘华, 马立驰, 等. 渤海湾盆地济阳坳陷潜山油气藏成藏期次和过程: 来自储层流体包裹体的证据[J]. 石油实验地质, 2022, 44(1): 129-138. doi: 10.11781/sysydz202201129

    ZHANG Zhiqing, LIU Hua, MA Lichi, et al. Characteristics of reservoir fluid inclusions and hydrocarbon charging process in the Dawangzhuang buried hill zone of Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 129-138. doi: 10.11781/sysydz202201129
    [25] 康华, 周勇水, 徐田武, 等. 普光地区千佛崖组一段流体包裹体特征及其地质意义[J]. 断块油气田, 2023, 30(6): 947-953.

    KANG Hua, ZHOU Yongshui, XU Tianwu, et al. Characteristics and geological significance of fluid inclusions in the first member of Qianfoya Formation in Puguang area[J]. Fault-Block Oil and Gas Field, 2023, 30(6): 947-953.
    [26] 郭小文, 陈家旭, 袁圣强, 等. 含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束: 以渤海湾盆地东营凹陷为例[J]. 石油学报, 2020, 41(3): 284-291.

    GUO Xiaowen, CHEN Jiaxu, YUAN Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins: a case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3): 284-291.
    [27] LIU Dehan, XIAO Xianming, CHENG Peng, et al. Study of genetic evolution of oil inclusion and density of surface oil by measurement of fluorescence lifetime of crude oil and oil inclusion[J]. Science China Earth Sciences, 2017, 60(1): 95-101. doi: 10.1007/s11430-016-5094-8
    [28] PING Hongwei, CHEN Honghan, GEORGE S C. Quantitatively predicting the thermal maturity of oil trapped in fluid inclusions based on fluorescence and molecular geochemical data of oil inclusions in the Dongying Depression, Bohai Bay Basin, China[J]. AAPG Bulletin, 2020, 104(8): 1751-1791. doi: 10.1306/09271919096
    [29] GEORGE S C, RUBLE T E, DUTKIEWICZ A, et al. Reply to comment by Oxtoby on "Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours"[J]. Applied Geochemistry, 2002, 17(10): 1375-1378. doi: 10.1016/S0883-2927(02)00027-6
    [30] HAGEMANN H W, HOLLERBACH A. The fluorescence behaviour of crude oils with respect to their thermal maturation and degradation[J]. Organic Geochemistry, 1986, 10(1/3): 473-480.
    [31] STASIUK L D, SNOWDON L R. Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil che-mistry, density and application to petroleum migration[J]. Applied Geochemistry, 1997, 12(3): 229-241. doi: 10.1016/S0883-2927(96)00047-9
    [32] 李峰, 朱光有, 吕修祥, 等. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定[J]. 石油学报, 2021, 42(11): 1417-1436. doi: 10.7623/syxb202111002

    LI Feng, ZHU Guangyou, LÜ Xiuxiang, et al. The disputes on the source of Paleozoic marine oil and gas and the determination of the Cambrian system as the main source rocks in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(11): 1417-1436. doi: 10.7623/syxb202111002
    [33] 朱光有, 胡剑风, 陈永权, 等. 塔里木盆地轮探1井下寒武统玉尔吐斯组烃源岩地球化学特征与形成环境[J]. 地质学报, 2022, 96(6): 2116-2130.

    ZHU Guangyou, HU Jianfeng, CHEN Yongquan, et al. Geochemical characteristics and formation environment of source rock of the Lower Cambrian Yuertusi Formation in well Luntan 1 in Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(6): 2116-2130.
    [34] 张朝军, 贾承造, 李本亮, 等. 塔北隆起中西部地区古岩溶与油气聚集[J]. 石油勘探与开发, 2010, 37(3): 263-269.

    ZHANG Chaojun, JIA Chengzao, LI Benliang, et al. Ancient karsts and hydrocarbon accumulation in the middle and western parts of the north Tarim Uplift, NW China[J]. Petroleum Exploration and Development, 2010, 37(3): 263-269.
    [35] 张三, 金强, 乔贞, 等. 塔河油田奥陶系构造差异演化及油气地质意义[J]. 中国矿业大学学报, 2020, 49(3): 576-586.

    ZHANG San, JIN Qiang, QIAO Zhen, et al. Differential tectonic evolution of the Ordovician and its significance in petroleum geology in main area of Tahe Oilfield[J]. Journal of China University of Mining & Technology, 2020, 49(3): 576-586.
    [36] 侯明才, 万梨, 傅恒. 塔河南盐下地区中奥陶统一间房组沉积环境分析[J]. 成都理工大学学报(自然科学版), 2008, 35(6): 601-609.

    HOU Mingcai, WAN Li, FU Heng. Study on the sedimentary environment of the Middle Ordovician Yijianfang Formation in the south of Tarim River area, Xinjiang, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(6): 601-609.
    [37] 艾克拜尔·沙迪克, 吕媛娥, 吕海涛. 塔河油田盐体覆盖区奥陶系储层发育特征及主控因素研究[J]. 新疆地质, 2005, 23(4): 396-400.

    AKBAR S, LÜ Yuane, LÜ Haitao. Characteristics and main controlling factors of the formation of Ordovician reservoirs in areas covered with salt layers in Tahe Oilfield[J]. Xinjiang Geology, 2005, 23(4): 396-400.
    [38] 汪洋, 张哨楠, 刘永立. 塔里木盆地塔河油田走滑断裂活动对油气成藏的控制作用: 以托甫39断裂带为例[J]. 石油实验地质, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394

    WANG Yang, ZHANG Shaonan, LIU Yongli. Controls of strike-slip fault activities on hydrocarbon accumulation in Tahe Oilfield, Tarim Basin: a case study of TP 39 fault zone[J]. Petroleum Geology & Experiment, 2022, 44(3): 394-401. doi: 10.11781/sysydz202203394
    [39] 刘学利, 郑小杰, 窦莲, 等. 薄层强底水多韵律层砂岩油藏高精细数值模拟研究: 以塔河9区下油组油藏为例[J]. 油气藏评价与开发, 2022, 12(2): 391-398.

    LIU Xueli, ZHENG Xiaojie, DOU Lian, et al. High precision numerical simulation of thin sandstone reservoir with sufficient bottom water and multiple cyclothem: a case study on lower formation of 9th block of Tahe Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 391-398.
    [40] 张长建, 吕艳萍, 文欢, 等. 塔河油田西部斜坡区加里东运动中期Ⅱ幕水文地貌特征及其对洞穴发育的控制[J]. 新疆石油地质, 2022, 43(2): 135-144.

    ZHANG Changjian, LYU Yanping, WEN Huan, et al. Paleo-hydrogeomorphic characteristics of episode Ⅱ of middle Caledonian movement and their controls on karst cave development in western slope area of Tahe oilfield[J]. Xinjiang Petroleum Geo-logy, 2022, 43(2): 135-144.
    [41] 张长建, 罗君兰, 文欢, 等. 塔河油田西部斜坡TH10421井区中—下奥陶统迷宫型缝洞结构特征[J]. 油气地质与采收率, 2023, 30(5): 1-11.

    ZHANG Changjian, LUO Junlan, WEN Huan, et al. Structural characteristics of maze-type fracture-cavity of Middle-Lower Ordovician in well TH10421 block in western slope of Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 1-11.
    [42] 吴丰, 代槿, 姚聪, 等. 塔河油田奥陶系一间房组与鹰山组断溶体发育模式解剖[J]. 断块油气田, 2022, 29(1): 33-39.

    WU Feng, DAI Jin, YAO Cong, et al. Developmental mode analysis of the fault-karst reservoir in Yijianfang Formation and Ying-shan Formation of Ordovician in Tahe Oilfield[J]. Fault-Block Oil and Gas Field, 2022, 29(1): 33-39.
    [43] 巫波, 杨文东, 吕晶, 等. 塔河油田缝洞型储集层类型综合识别[J]. 新疆石油地质, 2023, 44(2): 238-244.

    WU Bo, YANG Wendong, LYU Jing, et al. Comprehensive identification of fractured-vuggy reservoirs in Tahe oilfield[J]. Xinjiang Petroleum Geology, 2023, 44(2): 238-244.
    [44] 王传刚, 王铁冠, 张卫彪, 等. 塔里木盆地北部塔河油田原油分子地球化学特征及成因类型划分[J]. 沉积学报, 2006, 24(6): 901-909.

    WANG Chuangang, WANG Tieguan, ZHANG Weibiao, et al. Molecular geochemistry and classifications of genetic types of petroleum from Tahe Oilfield of the northern Tarim Basin[J]. Acta Sedimentologica Sinica, 2006, 24(6): 901-909.
    [45] 郑朝阳, 段毅, 张学军, 等. 塔河油田奥陶系原油有机地球化学特征及其油藏成因[J]. 沉积学报, 2011, 29(3): 605-612.

    ZHENG Chaoyang, DUAN Yi, ZHANG Xuejun, et al. Characte-ristics of molecular geochemistry and genesis of crude oils from Tahe Oilfield of Tarim Basin[J]. Acta Sedimentologica Sinica, 2011, 29(3): 605-612.
    [46] PETERS K E, FRASER T H, AMRIS W, et al. Geochemistry of crude oils from eastern Indonesia[J]. AAPG Bulletin, 1999, 83(12): 1927-1942.
    [47] 杨海军, 于双, 张海祖, 等. 塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J]. 地球化学, 2020, 49(6): 666-682.

    YANG Haijun, YU Shuang, ZHANG Haizu, et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica, 2020, 49(6): 666-682.
    [48] K. E. 彼得斯, C. C. 沃尔特斯, J. M. 莫尔多万. 生物标志化合物指南—下册—生物标志化合物和同位素在石油勘探与地史研究中的应用[M]. 2版. 张水昌, 李振西, 译. 北京: 石油工业出版社, 2011: 48-50.

    PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide[M]. 2nd ed. ZHANG Shuichang, LI Zhenxi, trans. Beijing: Petroleum Industry Press, 2011: 48-50.
    [49] 段毅, 于文修, 郑朝阳, 等. 塔里木盆地塔河油田原油与源岩对比研究[J]. 沉积学报, 2009, 27(1): 164-171.

    DUAN Yi, YU Wenxiu, ZHENG Zhaoyang, et al. Study of oil-source correlation for Tahe Oilfield of Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(1): 164-171.
    [50] 肖洪, 李美俊, 杨哲, 等. 不同环境烃源岩和原油中C19—C23三环萜烷的分布特征及地球化学意义[J]. 地球化学, 2019, 48(2): 161-170.

    XIAO Hong, LI Meijun, YANG Zhe, et al. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
    [51] ALEXANDER R, KAGI R I, ROWLAND S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and tri-methylnaphthalenes in some ancient sediments and petroleums[J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395.
    [52] RADKE M. Application of aromatic compounds as maturity indicators in source rocks and crude oils[J]. Marine and Petroleum Geology, 1988, 5(3): 224-236.
    [53] 陈致林, 李素娟, 王忠. 低—中成熟演化阶段芳烃成熟度指标的研究[J]. 沉积学报, 1997, 15(2): 192-197.

    CHEN Zhilin, LI Sujuan, WANG Zhong. A study on maturity indicators of some aromatics in low-midmature thermal evolution zones[J]. Acta Sedimentologica Sinica, 1997, 15(2): 192-197.
    [54] RADKE M, WELTE D H. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons[M]//BJROY M. Advances in organic geochemistry 1981. Chichester: John Wiley and Sons Incorporation, 1983: 504-512.
    [55] KVALHEIM O M, CHRISTY A A, TELNÆS N, et al. Maturity determination of organic matter in coals using the methylphenanthrene distribution[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1883-1888.
    [56] 包建平, 王铁冠, 周玉琦, 等. 甲基菲比值与有机质热演化的关系[J]. 江汉石油学院学报, 1992, 14(4): 8-13.

    BAO Jianping, WANG Tieguan, ZHOU Yuqi, et al. The relationship between methyl phenanthrene ratios and the evolution of organic matter[J]. Journal of Jianghan Petroleum Institute, 1992, 14(4): 8-13.
    [57] 魏志彬, 张大江, 张传禄, 等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学, 2001, 30(3): 242-247.

    WEI Zhibin, ZHANG Dajiang, ZHANG Chuanlu, etal. Methyldibenzothiophenes distribution index as a tool for maturity assessments of source rocks[J]. Geochimica, 2001, 30(3): 242-247.
    [58] 罗健, 程克明, 付立新, 等. 烷基二苯并噻吩: 烃源岩热演化新指标[J]. 石油学报, 2001, 22(3): 27-31.

    LUO Jian, CHENG Keming, FU Lixin, et al. Alkylated dibenzothiophene index: a new method to assess thermal maturity of source rocks[J]. Acta Petrolei Sinica, 2001, 22(3): 27-31.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  57
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2024-01-03
  • 刊出日期:  2024-01-28

目录

    /

    返回文章
    返回