留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苏北盆地高邮凹陷花页1井古近系阜宁组裂缝脉体流体演化及其对页岩油充注过程的指示意义

李超 罗涛 黄亚浩 刘义承 陈俊林 王川

李超, 罗涛, 黄亚浩, 刘义承, 陈俊林, 王川. 苏北盆地高邮凹陷花页1井古近系阜宁组裂缝脉体流体演化及其对页岩油充注过程的指示意义[J]. 石油实验地质, 2024, 46(2): 228-237. doi: 10.11781/sysydz202402228
引用本文: 李超, 罗涛, 黄亚浩, 刘义承, 陈俊林, 王川. 苏北盆地高邮凹陷花页1井古近系阜宁组裂缝脉体流体演化及其对页岩油充注过程的指示意义[J]. 石油实验地质, 2024, 46(2): 228-237. doi: 10.11781/sysydz202402228
LI Chao, LUO Tao, HUANG Yahao, LIU Yicheng, CHEN Junlin, WANG Chuan. Fluid evolution of fracture veins of Paleogene Funing Formation in well HY1 in Subei Basin and implications for shale oil filling[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 228-237. doi: 10.11781/sysydz202402228
Citation: LI Chao, LUO Tao, HUANG Yahao, LIU Yicheng, CHEN Junlin, WANG Chuan. Fluid evolution of fracture veins of Paleogene Funing Formation in well HY1 in Subei Basin and implications for shale oil filling[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 228-237. doi: 10.11781/sysydz202402228

苏北盆地高邮凹陷花页1井古近系阜宁组裂缝脉体流体演化及其对页岩油充注过程的指示意义

doi: 10.11781/sysydz202402228
基金项目: 

国家自然科学联合基金“盆地深部地质作用过程与资源效应” U20B6001

详细信息
    作者简介:

    李超(1971—),男,高级工程师,从事油气勘探开发及石油工程技术管理研究。E-mail:lic.oshd@sinopec.com

    通讯作者:

    黄亚浩(1990—),男,副教授,从事深层及非常规油气富集机理研究。E-mail:hyhtr08916@163.com

  • 中图分类号: TE122.1

Fluid evolution of fracture veins of Paleogene Funing Formation in well HY1 in Subei Basin and implications for shale oil filling

  • 摘要: 苏北盆地页岩油勘探开发取得重大突破。高邮凹陷花页1井岩心观察发现,古近系阜宁组二段富有机质页岩中天然裂缝发育,脉体内保存了大量页岩油气流体活动迁移的信息。以阜二段页岩裂缝充填的方解石脉体为研究对象,综合运用矿物学、元素地球化学、地质年代学以及地质流体技术,聚焦页岩裂缝脉体的古流体来源、脉体形成时间以及流体包裹体特征开展深入研究,提出页岩含油层埋藏、抬升剥蚀过程中古温度条件与对应地质时间。阜二段页岩裂缝主要产状类型为层理缝、滑脱缝、剪切缝、收缩缝和张性缝,裂缝内主要充填一期纤维状方解石脉体,方解石脉体表现为偏还原环境热液流体的来源;始新世中期阜二段裂缝脉体捕获原生绿色荧光油包裹体、始新世晚期捕获次生蓝色荧光油包裹体和第四纪晚期捕获次生绿色荧光油包裹体,分别指示了富有机质页岩主要存在三期页岩油的充注过程。页岩油的充注主要在页岩最大埋深时期形成,三垛构造运动对于该地区页岩油的调整运移具有重要作用。

     

  • 图  1  苏北盆地高邮凹陷构造单元和地层分布

    Figure  1.  Structural unit and stratigraphic distribution of Gaoyou Sag in Subei Basin

    图  2  苏北盆地高邮凹陷花页1井阜二段富有机质页岩裂缝脉体岩相学照片

    a.层理缝脉体岩心;b.滑脱缝脉体岩心;c.张性缝脉体岩心;d.剪切缝脉体岩心。

    Figure  2.  Petrographic photos of fracture veins of organic-rich shale in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  3  苏北盆地高邮凹陷花页1井阜二段页岩裂缝脉体阴极发光照片

    a,c.富有机质页岩纤维状方解石透射光照片;b,d.富有机质页岩纤维状方解石阴极发光照片。

    Figure  3.  Cathodoluminescence photos of shale fracture veins in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  4  苏北盆地高邮凹陷花页1井阜二段页岩裂缝脉体稀土元素配分模式

    Figure  4.  Rare earth element distribution pattern of shale fracture veins in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  5  苏北盆地高邮凹陷花页1井阜二段页岩裂缝脉体中流体包裹体岩相学照片

    a.次生蓝白色油包裹体;b.次生绿色油包裹体;c.原生绿色油包裹体;d.次生蓝白色油包裹体;e.原生绿色油包裹体;f次生蓝白色油包裹体。

    Figure  5.  Petrographic photos of fluid inclusions in shale fracture veins in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  6  苏北盆地高邮凹陷花页1井阜二段页岩裂缝脉体中流体包裹体荧光光谱

    Figure  6.  Fluorescence spectra of fluid inclusions in shale fracture veins in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  7  苏北盆地高邮凹陷花页1井阜二段裂缝脉体内流体包裹体均一温度分布

    Figure  7.  Homogeneous temperature distribution histogram of fluid inclusions in fracture veins in second member of Funing Formation in well HY1, Gaoyou Sag, Subei Basin

    图  8  苏北盆地高邮凹陷花页1井层理缝方解石脉体U-Pb同位素定年等时线

    Figure  8.  U-Pb isotope dating isochrones of calcite veins in bedding fractures in well HY1, Gaoyou Sag, Subei Basin

    图  9  苏北盆地高邮凹陷花页1井埋藏—热演化史及油气成藏期次

    Figure  9.  Burial-thermal evolution history and hydrocarbon accumulation period of well HY1 in Gaoyou Sag, Subei Basin

  • [1] 邹才能, 张国生, 杨智, 等. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学[J]. 石油勘探与开发, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm

    ZOU Caineng, ZHANG Guosheng, YANG Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: on unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
    [2] 云露, 何希鹏, 花彩霞, 等. 苏北盆地溱潼凹陷古近系陆相页岩油成藏地质特征及资源潜力[J]. 石油学报, 2023, 44(1): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301005.htm

    YUN Lu, HE Xipeng, HUA Caixia, et al. Accumulation characteristics and resource potential of Paleogene continental shale oil in Qintong Sag of Subei Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 176-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301005.htm
    [3] 昝灵, 白鸾羲, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油基本特征及成因分析[J]. 石油实验地质, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356

    ZAN Ling, BAI Luanxi, YIN Yanling, et al. Basic characteristics and genesis analysis of shale oil in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2023, 45(2): 356-365. doi: 10.11781/sysydz202302356
    [4] 姚红生, 云露, 昝灵, 等. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践[J]. 油气藏评价与开发, 2023, 13(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202302002.htm

    YAO Hongsheng, YUN Lu, ZAN Ling, et al. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(2): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202302002.htm
    [5] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm

    ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
    [6] 昝灵, 骆卫峰, 印燕铃, 等. 苏北盆地溱潼凹陷古近系阜宁组二段页岩油形成条件及有利区评价[J]. 石油实验地质, 2021, 43(2): 233-241. doi: 10.11781/sysydz202102233

    ZAN Lin, LUO Weifeng, YIN Yanling, et al. Formation conditions of shale oil and favorable targets in the second member of Paleogene Funing Formation in Qintong Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2021, 43(2): 233-241. doi: 10.11781/sysydz202102233
    [7] 朱相羽, 段宏亮, 李鹏, 等. 苏北盆地高邮凹陷阜二段页岩储集空间类型及孔喉结构特征[J]. 复杂油气藏, 2023, 16(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202301001.htm

    ZHU Xiangyu, DUAN Hongliang, LI Peng, et al. Shale reservoir pore types and pore throat structure characteristics of the second member of Funing Formation in Gaoyou Sag, Subei Basin[J]. Complex Hydrocarbon Reservoirs, 2023, 16(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202301001.htm
    [8] HUANG Yahao, TARANTOLA A, WANG Wenjing, et al. Charge history of CO2 in Lishui Sag, East China Sea Basin: evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J]. Marine and Petroleum Geology, 2018, 98: 50-65. doi: 10.1016/j.marpetgeo.2018.07.030
    [9] GAO Jian, ZHANG Jiankun, HE Sheng, et al. Overpressure generation and evolution in Lower Paleozoic gas shales of the Jiaoshiba region, China: implications for shale gas accumulation[J]. Marine and Petroleum Geology, 2019, 102: 844-859. doi: 10.1016/j.marpetgeo.2019.01.032
    [10] ROEDDER E, BODNAR R J. Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences, 1980, 8: 263-301. doi: 10.1146/annurev.ea.08.050180.001403
    [11] 卢宽, 黄亚浩, 何生, 等. 页岩中裂缝脉体地球化学指标对页岩气保存条件的指示: 以下扬子二叠系乐平组富有机质页岩为例[J]. 天然气地球科学, 2023, 34(6): 1090-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306013.htm

    LU Kuan, HUANG Yahao, HE Sheng, et al. Indication of geochemical indexes for shale gas preservation conditions in shale fractures vein: evidence from Yangzi Permian organic-rich shale in the Leping Formation[J]. Natural Gas Geoscience, 2023, 34(6): 1090-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202306013.htm
    [12] HUANG Yahao, HE Sheng, GUO Xiaowen, et al. Pressure-temperature-time-composition (P-T-t-x) of paleo-fluid in Permian organic-rich shale of Lower Yangtze Platform, China: insights from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2021, 126: 104936. doi: 10.1016/j.marpetgeo.2021.104936
    [13] WANG T G, HE Faqi, WANG Chunjiang, et al. Oil filling history of the Ordovician oil reservoir in the major part of the Tahe Oilfield, Tarim Basin, NW China[J]. Organic Geochemistry, 2008, 39(11): 1637-1646. doi: 10.1016/j.orggeochem.2008.05.006
    [14] COOGAN L A, PARRISH R R, ROBERTS N M W. Early hydrothermal carbon uptake by the upper oceanic crust: insight from in situ U-Pb dating[J]. Geology, 2016, 44(2): 147-150. doi: 10.1130/G37212.1
    [15] 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891

    QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891
    [16] ROBERTS N M W, WALKER R J. U-Pb geochronology of calcite-mineralized faults: absolute timing of rift-related fault events on the northeast Atlantic margin[J]. Geology, 2016, 44(7): 531-534. doi: 10.1130/G37868.1
    [17] 郭惠. 鄂尔多斯盆地断层活动期次研究方法及其油气意义: 方解石脉年代学[J]. 复杂油气藏, 2022, 15(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202201006.htm

    GUO Hui. Study method of fault activity stages in Ordos Basin and its petroleum significance: calcite vein chronology[J]. Complex Hydrocarbon Reservoirs, 2022, 15(1): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202201006.htm
    [18] 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm

    SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906006.htm
    [19] 吴忠锐, 何生, 何希鹏, 等. 涟源凹陷上二叠统大隆组泥页岩裂缝方解石脉体流体包裹体特征及其启示[J]. 地质科技情报, 2019, 38(4): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904009.htm

    WU Zhongrui, HE Sheng, HE Xipeng, et al. Characteristics of fluid inclusions in fracture calcite veins and implications of Upper Permain Dalong Formation shale at the Lianyuan Depression[J]. Geological Science and Technology Information, 2019, 38(4): 70-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201904009.htm
    [20] 刘冬冬, 郭靖, 潘占昆, 等. 页岩气藏超压演化过程: 来自四川盆地南部五峰组—龙马溪组裂缝流体包裹体的证据[J]. 天然气工业, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htm

    LIU Dongdong, GUO Jing, PAN Zhankun, et al. Overpressure evolution process in shale gas reservoir: evidence from the fluid inclusions in the fractures of Wufeng Formation-Longmaxi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202109004.htm
    [21] 郑开富, 彭霞玲. 苏北盆地上白垩统—第三系页岩油气成藏层位及有利区带[J]. 地质学刊, 2013, 37(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201301028.htm

    ZHENG Kaifu, PENG Xialing. Hydrocarbon accumulation and favorable zone of shale oil and gas in Upper Cretaceous-Neogene of North Jiangsu Basin[J]. Journal of Geology, 2013, 37(1): 147-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201301028.htm
    [22] 王海方. 苏北盆地古近系页岩油储层有效裂缝识别[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htm

    WANG Haifang. Recognition of effective fractures within the oil shale in the fourth member of Funing Formation in Northern Jiangsu Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(3): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201603003.htm
    [23] 张金亮, 刘宝珺, 毛凤鸣, 等. 苏北盆地高邮凹陷北斜坡阜宁组成岩作用及储层特征[J]. 石油学报, 2003, 24(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302008.htm

    ZHANG Jinliang, LIU Baojun, MAO Fengming, et al. Clastic diage-nesis and reservoir characteristics of Funing Formation in north slope of Gaoyou Depression in Subei Basin[J]. Acta Petrolei Sinica, 2003, 24(2): 43-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200302008.htm
    [24] 纪友亮, 李清山, 王勇, 等. 高邮凹陷古近系戴南组扇三角洲沉积体系及其沉积相模式[J]. 地球科学与环境学报, 2012, 34(1): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201004.htm

    JI Youliang, LI Qingshan, WANG Yong, et al. Fan delta sedimentary system and facies models of Dainan Formation of Paleogene in Gaoyou Sag[J]. Journal of Earth Sciences and Environment, 2012, 34(1): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201201004.htm
    [25] 付茜, 刘启东, 刘世丽, 等. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析[J]. 石油实验地质, 2020, 42(4): 625-631. doi: 10.11781/sysydz202004625

    FU Qian, LIU Qidong, LIU Shili, et al. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin[J]. Petroleum Geology & Experiment, 2020, 42(4): 625-631. doi: 10.11781/sysydz202004625
    [26] 陈家旭, 王斌, 郭小文, 等. 应用方解石激光原位U-Pb同位素定年确定多旋回叠合盆地油气成藏绝对时间: 以塔里木盆地塔河油田为例[J]. 石油与天然气地质, 2021, 42(6): 1365-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106011.htm

    CHEN Jiaxu, WANG Bin, GUO Xiaowen, et al. Application of laser in-situ U-Pb dating of calcite to determination of the absolute time of hydrocarbon accumulation in polycyclic superimposed basins: a case study on Tahe Oilfield, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(6): 1365-1375. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106011.htm
    [27] 胡安平, 沈安江, 梁峰, 等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm

    HU Anping, SHEN Anjiang, LIANG Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001005.htm
    [28] 李建青, 方朝刚, 吴通, 等. 江苏句容地区五峰组—高家边组泥页岩稀土元素特征及沉积环境[J]. 地质通报, 2022, 41(9): 1516-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202209002.htm

    LI Jianqing, FANG Chaogang, WU Tong, et al. Characteristics of REE and sedimentary environment of mud shale in Wufeng Formation-Gaojiabian Formation in Jurong area, Jiangsu Province[J]. Geological Bulletin of China, 2022, 41(9): 1516-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202209002.htm
    [29] 李淼, 周雨双, 赵永强, 等. 塔里木盆地玉北地区奥陶系缝洞充填方解石地球化学特征及其储层流体分析[J]. 石油实验地质, 2022, 44(4): 593-602. doi: 10.11781/sysydz202204593

    LI Miao, ZHOU Yushuang, ZHAO Yongqiang, et al. Geochemical characteristics and fluid origins of fracture- and cave-filling calcites of Ordovician in Yubei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 593-602. doi: 10.11781/sysydz202204593
    [30] 胡文瑄, 陈琪, 王小林, 等. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式[J]. 石油与天然气地质, 2010, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm

    HU Wenxuan, CHEN Qi, WANG Xiaolin, et al. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs[J]. Oil & Gas Geology, 2010, 31(6): 810-818. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006017.htm
    [31] 王淑芳, 董大忠, 王玉满, 等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质, 2014, 19(3): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201403005.htm

    WANG Shufang, DONG Dazhong, WANG Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201403005.htm
    [32] 平宏伟, 陈红汉, THIÉRY R, 等. 原油裂解对油包裹体均一温度和捕获压力的影响及其地质意义[J]. 地球科学(中国地质大学学报), 2014, 39(5): 587-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405010.htm

    PING Hongwei, CHEN Honghan, THIÉRY R, et al. Effects of oil cracking on homogenization temperature and trapping pressure of oil inclusion and its geological significance[J]. Earth Science (Journal of China University of Geosciences), 2014, 39(5): 587-600. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201405010.htm
    [33] 张芷晴, 刘华, 马立驰, 等. 渤海湾盆地济阳坳陷潜山油气藏成藏期次和过程: 来自储层流体包裹体的证据[J]. 石油实验地质, 2022, 44(1): 129-138. doi: 10.11781/sysydz202201129

    ZHANG Zhiqing, LIU Hua, MA Lichi, et al. Characteristics of reservoir fluid inclusions and hydrocarbon charging process in the Dawangzhuang buried hill zone of Jiyang Depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2022, 44(1): 129-138. doi: 10.11781/sysydz202201129
    [34] 蒋金亮. 高邮凹陷烃源岩热演化历史研究[D]. 北京: 中国石油大学(北京), 2019.

    JIANG Jinliang. Thermal evolution history of source rocks in Gaoyou Sag[D]. Beijing: China University of Petroleum (Beijing), 2019.
  • 加载中
图(9)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  19
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2024-01-03
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回