留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南襄盆地泌阳凹陷古近系核桃园组页岩含油性及烃类赋存特征

金芸芸 李楚雄 王勇 严永新 罗曦 黄帅博 李志明 周圆圆 孙中良 刘雅慧 贾梦瑶 冷筠滢

金芸芸, 李楚雄, 王勇, 严永新, 罗曦, 黄帅博, 李志明, 周圆圆, 孙中良, 刘雅慧, 贾梦瑶, 冷筠滢. 南襄盆地泌阳凹陷古近系核桃园组页岩含油性及烃类赋存特征[J]. 石油实验地质, 2024, 46(2): 354-365. doi: 10.11781/sysydz202402354
引用本文: 金芸芸, 李楚雄, 王勇, 严永新, 罗曦, 黄帅博, 李志明, 周圆圆, 孙中良, 刘雅慧, 贾梦瑶, 冷筠滢. 南襄盆地泌阳凹陷古近系核桃园组页岩含油性及烃类赋存特征[J]. 石油实验地质, 2024, 46(2): 354-365. doi: 10.11781/sysydz202402354
JIN Yunyun, LI Chuxiong, WANG Yong, YAN Yongxin, LUO Xi, HUANG Shuaibo, LI Zhiming, ZHOU Yuanyuan, SUN Zhongliang, LIU Yahui, JIA Mengyao, LENG Junying. Oil-bearing potential and hydrocarbon occurrence characteristics of shale in Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 354-365. doi: 10.11781/sysydz202402354
Citation: JIN Yunyun, LI Chuxiong, WANG Yong, YAN Yongxin, LUO Xi, HUANG Shuaibo, LI Zhiming, ZHOU Yuanyuan, SUN Zhongliang, LIU Yahui, JIA Mengyao, LENG Junying. Oil-bearing potential and hydrocarbon occurrence characteristics of shale in Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(2): 354-365. doi: 10.11781/sysydz202402354

南襄盆地泌阳凹陷古近系核桃园组页岩含油性及烃类赋存特征

doi: 10.11781/sysydz202402354
基金项目: 

国家自然科学基金项目 42090022

中国石化“十四五”资源评价方法与数据库建设项目 P23229

中国石化基础前瞻项目 P22211-4

详细信息
    作者简介:

    金芸芸(1983—),女,硕士,高级工程师,从事油气勘探工作。E-mail: yjykt2jyy.hnyt@sinopec.com

    通讯作者:

    李楚雄(1992—),男,硕士,助理研究员,从事非常规石油地质研究。E-mail: lichuxiong.syky@sinopec.com

  • 中图分类号: TE122.2

Oil-bearing potential and hydrocarbon occurrence characteristics of shale in Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

  • 摘要: 南襄盆地泌阳凹陷古近系核桃园组发育优质湖相页岩层系,页岩油资源潜力巨大。前人针对该层系页岩含油性及烃类赋存状态的研究相对薄弱,可能是制约泌阳凹陷页岩油勘探突破的重要因素之一。以泌阳凹陷南部Y1井核三段Ⅲ亚段页岩为研究对象,通过岩石热解、多温阶热解、X射线衍射等地球化学分析技术,系统开展了页岩含油性、烃类赋存特征及影响因素研究。研究结果显示:核三段Ⅲ亚段页岩岩相组合主要包括长英质页岩相、云灰质页岩相和混合质页岩相,纹层结构发育。烃源岩类型整体处于好—优质范围,热演化程度处于生油阶段。有机显微组分以腐泥型为主,有机质类型为Ⅰ—Ⅱ1型。页岩含油性随埋深增大呈递增趋势,烃类赋存特征由中上部以吸附烃为主,过渡至下部以游离烃为主。碎屑矿物及有机碳含量是控制游离烃和吸附烃含量的主要因素。总体认为,核桃园组下部页岩含油饱和度指数整体高于100 mg/g,游离烃含量平均高于3 mg/g,具备较好的页岩油勘探开发前景。

     

  • 图  1  南襄盆地泌阳凹陷区域地质概况(a)和地层岩性柱状图(b)

    Figure  1.  Regional geological overview (a) and stratigraphic lithology histogram (b) of Biyang Sag, Nanxiang Basin

    图  2  南襄盆地泌阳凹陷古近系核桃园组三段页岩矿物组成(a)及岩相划分(b)

    Figure  2.  Mineral composition (a) and lithofacies division (b) of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  3  南襄盆地泌阳凹陷古近系核桃园组三段页岩典型岩相类型

    a.岩心照片,长英质页岩相,①小层,深度2 742.3 m;b.图a的岩心薄片照片;c.岩心照片,云灰质页岩相,②小层,深度2 799.7 m;d.图c的岩心薄片照片;e.岩心照片,混合质页岩相,①小层,深度2 764.7 m;f.图e的岩心薄片照片。

    Figure  3.  Typical lithofacies types of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  4  南襄盆地泌阳凹陷古近系核桃园组三段烃源岩品质类型

    Figure  4.  Quality types of source rocks in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  5  南襄盆地泌阳凹陷古近系核桃园组三段页岩有机质类型划分

    Figure  5.  Classification of shale organic matter types in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  6  南襄盆地泌阳凹陷古近系核桃园组三段页岩典型有机显微组分

    a.层状藻类体,黄绿色荧光,①小层,深度2 742.3 m;b.结构藻类体,亮黄色荧光,②小层,深度2 774.6 m;c.孢粉体,黄绿色荧光,②小层,深度2 774.6 m;d.烃类体,绿色荧光,②小层,深度2 804.8 m;e.镜质体,微弱黄褐色荧光,②小层,深度2 804.8 m。

    Figure  6.  Typical organic macerals of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  7  南襄盆地泌阳凹陷古近系核桃园组三段页岩含油性及烃类赋存状态综合评价

    Figure  7.  Comprehensive evaluation of oil-bearing potential and hydrocarbon occurrence in shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  8  南襄盆地泌阳凹陷古近系核桃园组三段页岩总有机碳含量与游离烃S1的关系

    Figure  8.  Relationship between TOC content and free hydrocarbon S1 of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  9  南襄盆地泌阳凹陷古近系核桃园组三段页岩含油饱和度指数与热演化程度(a)及生产力指数(b)的相关性

    Figure  9.  Correlation between oil saturation index with thermal evolution degree (a) and productivity index (b) of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  10  南襄盆地泌阳凹陷古近系核桃园组三段页岩游离烃(a)、吸附烃(b)含量与总有机碳含量的相关性

    Figure  10.  Correlation between free hydrocarbon (a) and adsorbed hydrocarbon (b) contents with TOC content of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  11  南襄盆地泌阳凹陷古近系核桃园组三段页岩游离烃(a)、吸附烃(b)含量与Tmax的相关性

    Figure  11.  Correlation between free hydrocarbon (a) and adsorbed hydrocarbon (b) contents with Tmax of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

    图  12  南襄盆地泌阳凹陷古近系核桃园组三段页岩游离烃(a-c)、吸附烃(d-f)含量与不同类型矿物含量的相关性

    Figure  12.  Correlation between free hydrocarbon (a-c) and adsorbed hydrocarbon (d-f) contents with different mineral contents of shale in third member of Paleogene Hetaoyuan Formation in Biyang Sag, Nanxiang Basin

  • [1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm

    JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201202002.htm
    [2] 李吉君, 史颖琳, 章新文, 等. 页岩油富集可采主控因素分析: 以泌阳凹陷为例[J]. 地球科学(中国地质大学学报), 2014, 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm

    LI Jijun, SHI Yinglin, ZHANG Xinwen, et al. Control factors of enrichment and producibility of shale oil: a case study of Biyang Depression[J]. Earth Science(Journal of China University of Geosciences), 2014, 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm
    [3] 刘惠民. 济阳坳陷页岩油勘探实践与前景展望[J]. 中国石油勘探, 2022, 27(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201007.htm

    LIU Huimin. Exploration practice and prospect of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2022, 27(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201007.htm
    [4] 邹才能, 杨智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm

    ZOU Caineng, YANG Zhi, CUI Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
    [5] BRUNAUER S, EMMETT P H, TELLER E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. doi: 10.1021/ja01269a023
    [6] 包友书, 张林晔, 张金功, 等. 渤海湾盆地东营凹陷古近系页岩油可动性影响因素[J]. 石油与天然气地质, 2016, 37(3): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htm

    BAO Youshu, ZHANG Linye, ZHANG Jingong, et al. Factors influencing mobility of Paleogene shale oil in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(3): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201603015.htm
    [7] 蒋启贵, 黎茂稳, 钱门辉, 等. 不同赋存状态页岩油定量表征技术与应用研究[J]. 石油实验地质, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Quantitative characterization of shale oil in different occurrence states and its application[J]. Petroleum Geology & Experiment, 2016, 38(6): 842-849. doi: 10.11781/sysydz201606842
    [8] ZINK K G, SCHEEDER G, STUECK H L, et al. Total shale oil inventory from an extended Rock-Eval approach on non-extracted and extracted source rocks from Germany[J]. International Journal of Coal Geology, 2016, 163: 186-194. doi: 10.1016/j.coal.2016.06.023
    [9] 薛海涛, 田善思, 王伟明, 等. 页岩油资源评价关键参数——含油率的校正[J]. 石油与天然气地质, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm

    XUE Haitao, TIAN Shansi, WANG Weiming, et al. Correction of oil content: one key parameter in shale oil resource assessment[J]. Oil & Gas Geology, 2016, 37(1): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201601004.htm
    [10] BORDENAVE M L. Geochemical methods and tools in petroleum exploration[M]//BORDENAVE M L. Applied petroleum geochemistry. Paris: Editons Technip, 1993: 240-243.
    [11] JARVIE D M. Shale resource systems for oil and gas: part 2: shale-oil resource systems[M]//BREYER J A. Shale reservoirs: giant resources for the 21st century. Tulsa: American Association of Petroleum Geologists, 2012: 89-119.
    [12] JARVIE D M. Components and processes affecting producibility and commerciality of shale resource systems[J]. Geologica Acta, 2014, 12(4): 307-325.
    [13] LI Jijun, WANG Weiming, CAO Qun, et al. Impact of hydrocarbon expulsion efficiency of continental shale upon shale oil accumulations in Eastern China[J]. Marine and Petroleum Geology, 2015, 59: 467-479. doi: 10.1016/j.marpetgeo.2014.10.002
    [14] 钱门辉, 王绪龙, 黎茂稳, 等. 玛页1井风城组页岩含油性与烃类赋存状态[J]. 新疆石油地质, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htm

    QIAN Menhui, WANG Xulong, LI Maowen, et al. Oil-bearing properties and hydrocarbon occurrence states of Fengcheng Formation shale in well Maye-1, Mahu Sag[J]. Xinjiang Petroleum Geology, 2022, 43(6): 693-703. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206007.htm
    [15] 袁玉哲, 罗家群, 朱颜, 等. 南襄盆地泌阳凹陷和南阳凹陷油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3): 364-373. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103014.htm

    YUAN Yuzhe, LUO Jiaqun, ZHU Yan, et al. Petroleum exploration history and enlightenment of Biyang Sag and Nanyang Sag in Nanxiang Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3): 364-373. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103014.htm
    [16] 李志明, 金芸芸, 李楚雄, 等. 南襄盆地泌阳凹陷渐新统核桃园组三Ⅲ亚段页岩油富集模式: 以中部深凹带YYY1井取心段为例[J]. 石油实验地质, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952

    LI Zhiming, JIN Yunyun, LI Chuxiong, et al. Discussion on shale oil enrichment pattern in the Ⅲ submember of the third member of Oligocene Hetaoyuan Formation, Biyang Sag, Nanxiang Basin: a case study of cored interval of well YYY1 in the central deep sag zone[J]. Petroleum Geology & Experiment, 2023, 45(5): 952-962. doi: 10.11781/sysydz202305952
    [17] LI Jinbu, WANG Min, CHEN Zhuoheng, et al. Evaluating the total oil yield using a single routine Rock-Eval experiment on asreceived shales[J]. Journal of Analytical and Applied Pyrolysis, 2019, 144: 104707. doi: 10.1016/j.jaap.2019.104707
    [18] 何涛华, 李文浩, 谭昭昭, 等. 南襄盆地泌阳凹陷核桃园组页岩油富集机制[J]. 石油与天然气地质, 2019, 40(6): 1259-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906010.htm

    HE Taohua, LI Wenhao, TAN Zhaozhao, et al. Mechanism of shale oil accumulation in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin[J]. Oil & Gas Geology, 2019, 40(6): 1259-1269. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906010.htm
    [19] 蒋启贵, 黎茂稳, 钱门辉, 等. 页岩油探井现场地质评价实验流程与技术进展[J]. 石油与天然气地质, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm

    JIANG Qigui, LI Maowen, QIAN Menhui, et al. Experimental procedures of well-site geological evaluation for shale oil and related technological progress[J]. Oil & Gas Geology, 2019, 40(3): 571-582. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903013.htm
    [20] 孙焕泉. 济阳坳陷页岩油勘探实践与认识[J]. 中国石油勘探, 2017, 22(4): 1-14. doi: 10.3969/j.issn.1672-7703.2017.04.001

    SUN Huanquan. Exploration practice and cognitions of shale oil in Jiyang Depression[J]. China Petroleum Exploration, 2017, 22(4): 1-14. doi: 10.3969/j.issn.1672-7703.2017.04.001
    [21] PETERS K E, CASSA M R. Applied source rock geochemistry[M]//MAGOON L B, DOW W G. The petroleum system: from source to trap. Tulsa: American Association of Petroleum Geologists, 1994: 93-120.
    [22] PHILP R P. Petroleum formation and occurrence[J]. Eos, Trans-actions American Geophysical Union, 1985, 66(37): 643-644. doi: 10.1029/EO066i037p00643
    [23] 李志明, 徐二社, 秦建中, 等. 烃源岩评价中的若干问题[J]. 西安石油大学学报(自然科学版), 2010, 25(6): 8-12. doi: 10.3969/j.issn.1673-064X.2010.06.002

    LI Zhiming, XU Ershe, QIN Jianzhong, et al. Some problems on the evaluation of source rock[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2010, 25(6): 8-12. doi: 10.3969/j.issn.1673-064X.2010.06.002
    [24] 李志明, 孙中良, 鲍云杰, 等. 冀北坳陷中元古界洪水庄组页岩油勘探前景探讨[J]. 石油实验地质, 2023, 45(1): 29-40. doi: 10.11781/sysydz202301029

    LI Zhiming, SUN Zhongliang, BAO Yunjie, et al. Discussion on prospecting shale oil potential of Mesoproterozoic Hongshuizhuang Formation in the Jibei Depression[J]. Petroleum Geology & Experiment, 2023, 45(1): 29-40. doi: 10.11781/sysydz202301029
    [25] ESPITALIÉ J. Use of Tmax as a maturation index for different types of organic matter: comparison with vitrinite reflectance[M]//BURRUS J. Thermal modeling in sedimentary basins. Paris: Editions Technip, 1986: 475-496.
    [26] WANG Enze, LI Changrong, FENG Yue, et al. Novel method for determining the oil moveable threshold and an innovative model for evaluating the oil content in shales[J]. Energy, 2022, 239: 121848. doi: 10.1016/j.energy.2021.121848
    [27] 郭飞飞, 柳广弟. 南襄盆地南阳凹陷古近系核桃园组核三段优质烃源岩分布与油气成藏特征[J]. 天然气地球科学, 2021, 32(3): 405-415. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103010.htm

    GUO Feifei, LIU Guangdi. The distribution of high-quality source rocks in He3 member and hydrocarbon accumulation characteristics in Nanyang Depression, Nanxiang Basin[J]. Natural Gas Geoscience, 2021, 32(3): 405-415. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103010.htm
    [28] 李志明, 陶国亮, 黎茂稳, 等. 鄂尔多斯盆地西南部彬长区块三叠系延长组7段3亚段页岩油勘探前景探讨[J]. 石油与天然气地质, 2019, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm

    LI Zhiming, TAO Guoliang, LI Maowen, et al. Discussion on prospecting potential of shale oil in the 3rd sub-member of the Triassic Chang 7 member in Binchang block, southwestern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 558-570. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903012.htm
    [29] 蒋启贵, 王延斌, 秦建中, 等. 中国南方海相烃源岩生烃动力学研究[J]. 石油实验地质, 2008, 30(6): 606-610. doi: 10.3969/j.issn.1001-6112.2008.06.014

    JIANG Qigui, WANG Yanbin, QIN Jianzhong, et al. Kinetics of hydrocarbon generation of marine source rocks in South China[J]. Petroleum Geology & Experiment, 2008, 30(6): 606-610. doi: 10.3969/j.issn.1001-6112.2008.06.014
    [30] 张大庚, 依艳丽, 郑西来, 等. 土壤对石油烃吸附及其释放规律的研究[J]. 沈阳农业大学学报, 2005, 36(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY200501013.htm

    ZHANG Dageng, YI Yanli, ZHENG Xilai, et al. Soil adsorption to petroleum and release in meadow soils[J]. Journal of Shenyang Agricultural University, 2005, 36(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY200501013.htm
    [31] PANG Xiongqi, LI Maowen, LI Sumei, et al. Geochemistry of petroleum systems in the Niuzhuang South Slope of Bohai Bay Basin: part 3. Estimating hydrocarbon expulsion from the Shahejie Formation[J]. Organic Geochemistry, 2005, 36(4): 497-510. doi: 10.1016/j.orggeochem.2004.12.001
    [32] WANG Enze, LIU Guoyong, PANG Xiongqi, et al. An improved hydrocarbon generation potential method for quantifying hydrocarbon generation and expulsion characteristics with application example of Paleogene Shahejie Formation, Nanpu Sag, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2020, 112: 104-106.
    [33] 李嘉蕊, 杨智, 王兆云, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油赋存定量表征及其主控因素[J]. 石油实验地质, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681

    LI Jiarui, YANG Zhi, WANG Zhaoyun, et al. Quantitative characte-rization and main controlling factors of shale oil occurrence in Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Geology & Experiment, 2023, 45(4): 681-692. doi: 10.11781/sysydz202304681
    [34] 李洪波, 吴智超, 张敏, 等. 吉木萨尔凹陷芦草沟组页岩油地球化学特征与运聚意义[J]. 断块油气田, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htm

    LI Hongbo, WU Zhichao, ZHANG Min, et al. The geochemical characteristics and migration-accumulation significances of shale oil in Lucaogou Formation of Jimsar Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(4): 579-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202304008.htm
    [35] 罗超, 张焕旭, 张纪智, 等. 岩石密闭热释方法评价页岩含油性特征: 以四川盆地侏罗系大安寨段为例[J]. 石油实验地质, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712

    LUO Chao, ZHANG Huanxu, ZHANG Jizhi, et al. Evaluation of oil content in shale by sealed thermal desorption: a case study of Jurassic Da'anzhai Member, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(4): 712-719. doi: 10.11781/sysydz202204712
    [36] 钱门辉, 黎茂稳, 蒋启贵, 等. 页岩岩心样品烃类散失特征与地质意义[J]. 石油实验地质, 2022, 44(3): 497-504. doi: 10.11781/sysydz202203497

    QIAN Menhui, LI Maowen, JIANG Qigui, et al. Evaluation of evaporative loss of hydrocarbon in shale samples and its geological implications[J]. Petroleum Geology & Experiment, 2022, 44(3): 497-504. doi: 10.11781/sysydz202203497
    [37] 杨智, 邹才能. "进源找油": 源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm

    YANG Zhi, ZOU Caineng. "Exploring petroleum inside source kitchen": connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
    [38] 杨丽, 彭志春, 刘薇, 等. 文昌X油田珠海组低渗储层成岩作用与孔隙演化[J]. 断块油气田, 2022, 29(5): 641-646, 658. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205011.htm

    YANG Li, PENG Zhichun, LIU Wei, et al. Diagenesis and pore evolution of low permeability reservoir in Zhuhai Formation of Wenchang X oil field[J]. Fault-Block Oil and Gas Field, 2022, 29(5): 641-646, 658. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202205011.htm
    [39] 支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm

    ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Deve-lopment, 2021, 48(1): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202101006.htm
  • 加载中
图(12)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  120
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2024-01-05
  • 刊出日期:  2024-03-28

目录

    /

    返回文章
    返回