留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地温梯度在塔里木盆地古生界热演化研究中的应用

丁勇 潘泉涌

丁勇, 潘泉涌. 地温梯度在塔里木盆地古生界热演化研究中的应用[J]. 石油实验地质, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451
引用本文: 丁勇, 潘泉涌. 地温梯度在塔里木盆地古生界热演化研究中的应用[J]. 石油实验地质, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451
DING Yong, PAN Quanyong. Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451
Citation: DING Yong, PAN Quanyong. Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 451-459. doi: 10.11781/sysydz202403451

地温梯度在塔里木盆地古生界热演化研究中的应用

doi: 10.11781/sysydz202403451
基金项目: 

中国石化科技部项目“满加尔坳陷及周缘油气成藏主控因素与选区评价” P23186

详细信息
    作者简介:

    丁勇(1968—),男,博士,研究员,从事烃源岩与油气成藏富集规律勘探综合研究。E-mail: 178932832@qq.com

  • 中图分类号: TE122.11

Application of geothermal gradient in the study of thermal evolution of Paleozoic source rocks, Tarim Basin

  • 摘要: 塔里木盆地古生界烃源岩热史研究,特别是对超深古老烃源岩热演化认识存在较大争议,热演化阶段评价方法一直是困扰烃源岩热史研究的关键问题。调研结果表明,塔里木盆地寒武系古地温梯度变化在2.95~3.6 ℃/hm之间, 按照生烃温度门槛值65 ℃计算,分别需要上覆地层厚度2 203~1 806 m,相差397 m,即2.58 ℃,温度差值较小。因此认为,塔里木盆地寒武系古地温梯度变化较小,可以忽略每期地温梯度取值上的差别,厚度可能是决定温度的主要因素;地层沉积与残留厚度可比较准确地获得,误差主要取决于剥蚀厚度的恢复。通过可靠获取的地层厚度、古地温梯度和剥蚀厚度等参数,以及烃源岩生烃图版,对塔里木盆地寒武系玉尔吐斯组烃源岩热演化阶段进行了评价;界定了关键期环满加尔坳陷的有效烃源岩及其分布,对玉尔吐斯组有效烃源岩及其规模生烃能力进行了预测和划分,并预测和划分了晚期成藏的有利区域。不同阶段有效烃源岩及其规模生烃量是每期成藏富集的关键,利用该方法避免了成熟度判识缺少可靠温标的问题,为塔里木盆地深层—特深层石油勘探和开发以及晚期成藏有利区的选择提供了重要的科学依据。

     

  • 图  1  塔里木盆地塔北地区AD4-S99-S88-TS1-YQD1连井对比

    连井位置见图 2

    Figure  1.  Stratigraphic comparison of wells AD4, S99, S88, TS1 and YQD1 in Tabei area, Tarim Basin

    图  2  塔里木盆地上奥陶统—志留系地层厚度分布

    Figure  2.  Thickness distribution of Upper Ordovician and Silurian strata in Tarim Basin

    图  3  传统油气生成演化模式和勘探黄金带[39]

    Figure  3.  Traditional hydrocarbon generation and evolution model and prime exploration area

    图  4  塔里木盆地顺北地区不同时期烃源岩热演化及其分布

    Figure  4.  Thermal evolution and distribution of source rocks in different periods in Shunbei area, Tarim Basin

    图  5  塔里木盆地寒武系玉尔吐斯组燕山晚期至喜马拉雅期ΔRo变化分布区

    Figure  5.  Distribution of ΔRo of Cambrian Yurtus Formation in Tarim Basin from late Yanshanian to Himalayan period

    表  1  塔里木盆地古地温梯度研究成果概览

    Table  1.   Summary of paleo-geothermal gradient research results of Tarim Basin

    构造单元 井号 不同时代的古地温梯度/(℃/hm) 资料来源
    Q N E K J T P C D S O2+3 O1 Є
    塔北隆起 YM1 1.72 2.72 2.90 2.90 2.90 3.00 3.20 3.20 3.00 3.00 3.50 李慧莉等[20]
    H1 2.00 2.22 2.50 2.60 2.70 2.90
    LN46 2.00 2.20 2.65 2.70 2.80 3.00 3.20 3.20 3.00 3.00 3.50 3.50
    LN1 2.00 2.30 2.65 2.70 2.80 3.00 3.30 3.30 3.30 3.30 3.30 3.50
    LN5 1.82 2.45 2.70 2.80 2.85 3.00 3.20 3.10 3.05 3.05 3.05 3.50
    YM1 1.70 2.70 2.90 2.90 2.90 3.00 3.20 3.20 3.00 3.00 3.50
    LN46 2.00 2.20 2.70 2.80 3.00 3.20 3.20 3.00 3.00 3.50 3.50
    LN5 2.00 2.40 2.60 2.70 2.80 2.90 3.00 3.00 3.00 3.00 3.10 3.10 潘长春等[33]
    满加尔坳陷 MX1 1.70 2.40 2.70 2.80 2.90 3.00 3.20 3.20 李慧莉等[20]
    QK1 2.00 2.20 2.60 2.70 2.80 3.00 3.10 3.00 2.85 2.85 2.85
    MX1 1.70 2.40 2.70 2.80 2.90 3.00 3.20 3.20
    QK1 2.00 2.20 2.60 2.70 2.80 3.00 3.10 3.00 2.90 2.90 2.90
    KQ1 3.20 3.50 3.50 邱楠生等[34]
    中央隆起带 H2 2.00 2.20 2.50 2.60 2.60 2.60 2.60 3.00 李慧莉等[20]
    TZ1 2.05 2.60 3.00 3.05 3.05 3.10 3.20 3.20 2.90 2.90 2.90 3.50 3.50
    TD1 2.25 2.65 3.05 3.10 3.10 3.15 3.20 3.85 3.85 3.85 3.85 3.50 3.60
    TZ12 2.20 2.50 2.80 3.00 3.00 3.10 3.20 3.20 3.00 3.00 3.35 3.50
    TAC1 2.20 2.60 2.70 2.80 2.90 3.00 3.15 3.15 3.00 3.00 3.40 3.45 3.45
    H4 2.00 2.20 2.40 2.60 2.60 2.60 2.90 2.90 2.70 2.70 2.90 2.98 2.95
    TZ12 2.20 2.50 2.80 3.00 3.00 3.10 3.50 3.20 3.00 3.00 3.40 3.40
    TAC1 2.20 2.60 2.70 2.80 2.90 3.10 3.50 3.20 3.00 3.00 3.00 3.10 3.30
    H4 1.90 2.10 2.40 2.60 2.60 2.60 3.50 2.90 2.70 2.70 3.20 3.00 3.00
    TD1 2.30 2.70 3.00 3.10 3.10 3.20 3.20 3.80 3.80 4.00 4.00 3.50 3.60
    TZ1 2.00 2.50 2.60 2.70 2.80 2.90 3.10 3.00 3.00 3.00 3.10 3.10 3.20
    TD1 2.30 2.50 2.60 2.70 2.90 3.30 3.60 3.60 3.60 3.60 3.70 3.70 3.80
    TC1、TZ12、TZ45 2.20 2.50 2.50 2.60 2.80 2.90 3.00 3.20 3.30 3.50
    TZ10 2.50 2.60 3.00 3.10 3.10 3.06 3.06 2.90 2.90 3.54
    西南坳陷 T1 3.10 3.40 3.00 3.30 3.00 李慧莉等[20]
    Q3 2.10 2.50 2.85 2.85 2.85 2.85 2.85 3.20
    Q3 2.10 2.50 2.80 2.80 2.80 2.80 2.80 3.20
    下载: 导出CSV
  • [1] SUGGATE R P. 埋藏深度、镜质体反射率和地温梯度的关系[J]. 王岚, 译. 海洋石油, 1998(4): 44-58.

    SUGGATE R P. The relationship between burial depth, vitrinite reflectance, and geothermal gradient[J]. WANG Lan, trans. Offshore Oil, 1998(4): 44-58.
    [2] 邱楠生, 梅庆华, 姜光, 等. 塔里木盆地巴楚隆起热历史: 来自He年龄和Ro的约束[C]//中国地球物理学会第二十五届年会. 合肥: 中国科学技术大学出版社, 2009.

    QIU Nansheng, MEI Qinghua, JIANG Guang, et al. Thermal history of Bachu Uplift in Tarim Basin: constraints from He age and Ro[C]//The 25th Annual Meeting of the Chinese Geophysical Society. Hefei: The University of Science and Technology of China Press, 2009.
    [3] 王飞宇, 何萍, 程顶胜, 等. 镜状体反射率可作为下古生界高过成熟烃源岩成熟度标尺[J]. 天然气工业, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm

    WANG Feiyu, HE Ping, CHENG Dingsheng, et al. The reflectance of mirror like bodies can serve as a maturity scale for high and over mature source rocks in the Lower Paleozoic era[J]. Natural Gas Industry, 1996, 16(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG604.003.htm
    [4] 崔可. 沥青成因类型影响RoBRo关系[J]. 海相油气地质, 1999, 4(3): 36-37.

    CUI Ke. The type of asphalt formation affects the RoB-Ro relationship[J]. Marine Origin Petroleum Geology, 1999, 4(3): 36-37.
    [5] 程顶胜, 郝石生, 王飞宇. 高过成熟烃源岩成熟度指标: 镜状体反射率[J]. 石油勘探与开发, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm

    CHENG Dingsheng, HAO Shisheng, WANG Feiyu. Reflectance of vitrinite-like macerals, a possible thermal maturity index for highly/over-matured source rocks of the Lower Paleozoic[J]. Petroleum Exploration and Development, 1995, 22(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002019.htm
    [6] 程世伟. 激光拉曼光谱分析在高—过成熟烃源岩成熟度评价中的应用[J]. 内江科技, 2015, 36(2): 136. doi: 10.3969/j.issn.1006-1436.2015.02.084

    CHENG Shiwei. Application of laser Raman spectroscopy analysis in maturity evaluation of high overmature source rocks[J]. Neijiang Technology, 2015, 36(2): 136. doi: 10.3969/j.issn.1006-1436.2015.02.084
    [7] 徐秋晨, 邱楠生, 刘雯, 等. 利用团簇同位素恢复沉积盆地热历史的探索[J]. 科学通报, 2019, 64(5): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htm

    XU Qiuchen, QIU Nansheng, LIU Wen, et al. Reconstructing the basin thermal history with clumped isotope[J]. Chinese Science Bulletin, 2019, 64(5): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z1007.htm
    [8] 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891

    QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 2023, 45(5): 891-903. doi: 10.11781/sysydz202305891
    [9] 陈刚, 赵重远, 李丕龙, 等. Ro反演的盆地热史恢复方法与相关问题[J]. 石油与天然气地质, 2002, 23(4): 343-347. doi: 10.3321/j.issn:0253-9985.2002.04.008

    CHEN Gang, ZHAO Zhongyuan, LI Pilong, et al. Ro inversion of thermal history reconstruction in sedimentary basin and its related problems[J]. Oil & Gas Geology, 2002, 23(4): 343-347. doi: 10.3321/j.issn:0253-9985.2002.04.008
    [10] 任战利, 崔军平, 祁凯, 等. 叠合盆地深层、超深层热演化史恢复理论及方法研究新进展[J]. 西北大学学报(自然科学版), 2022, 52(6): 910-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202206002.htm

    REN Zhanli, CUI Junping, QI Kai, et al. New progress in research on theories and methods for reconstruction of deep and ultra-deep thermal evolution history in superimposed basins[J]. Journal of Northwest University (Natural Science Edition), 2022, 52(6): 910-929. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ202206002.htm
    [11] 高志农. 碳酸盐烃源岩演化程度评价的几个问题[J]. 河南石油, 1999, 13(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN199904000.htm

    GAO Zhinong. Several issues on evaluating the evolution degree of carbonate source rocks[J]. Petroleum Geology and Engineering, 1999, 13(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN199904000.htm
    [12] 周中毅, 盛国英. 塔里木盆地古地温与深部找油(气)前景[J]. 地球化学, 1985(3): 236-241. doi: 10.3321/j.issn:0379-1726.1985.03.005

    ZHOU Zhongyi, SHENG Guoying. Paleogeothermal gradient in the Tarim Basin and oil(gas) prospects at great depths[J]. Geochimica, 1985(3): 236-241. doi: 10.3321/j.issn:0379-1726.1985.03.005
    [13] 周中毅. 塔里木盆地的地温梯度偏低深部有较大油气前景[J]. 石油与天然气地质, 1985, 6(S1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT1985S1010.htm

    ZHOU Zhongyi. The geothermal gradient in the Tarim Basin is low, and there is a great oil and gas prospect in the deep[J]. Oil & Gas Geology, 1985, 6(S1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT1985S1010.htm
    [14] 吴鲜, 李丹, 朱秀香, 等. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响: 以顺北5号走滑断裂带为例[J]. 石油实验地质, 2022, 44(3): 402-412. doi: 10.11781/sysydz202203402

    WU Xian, LI Dan, ZHU Xiuxiang, et al. Influence of geothermal field on ultra-deep Ordovician oil and gas in Shunbei field, Tarim Basin: a case study of Shunbei no. 5 strike-slip fault[J]. Petroleum Geology & Experiment, 2022, 44(3): 402-412. doi: 10.11781/sysydz202203402
    [15] 邓林, 王英民. 盆地古地温场演化动态数值模拟方法及其应用[J]. 成都理工学院学报, 1998, 25(S1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG8S1.007.htm

    DENG Lin, WANG Yingmin. A dynamic simulation approach to the evolution history of the palaeogeotemperature field of a basin[J]. Journal of Chengdu University of Technology, 1998, 25(S1): 43-52. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG8S1.007.htm
    [16] 黄少英, 胡方杰, 张科, 等. 塔里木盆地中央隆起超深层现今地温场特征[J]. 地质学报, 2022, 96(11): 3955-3966. doi: 10.3969/j.issn.0001-5717.2022.11.019

    HUANG Shaoying, HU Fangjie, ZHANG Ke, et al. Present-day geotemperature field of superdeep layers in the Central Uplift, Tarim Basin[J]. Acta Geologica Sinica, 2022, 96(11): 3955-3966. doi: 10.3969/j.issn.0001-5717.2022.11.019
    [17] 汪在君, 齐玉林, 马金龙. 塔里木盆地大庆区块壳内地温场计算及应用分析[J]. 大庆石油地质与开发, 2000, 19(1): 14-16. doi: 10.3969/j.issn.1000-3754.2000.01.005

    WANG Zaijun, QI Yulin, MA Jinlong. Calculation and application of geothermal field within the crust of Daqing block in Tarim Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2000, 19(1): 14-16. doi: 10.3969/j.issn.1000-3754.2000.01.005
    [18] 胡晨晖. 涠西南A洼现今地温场恢复及有利勘探方向[J]. 复杂油气藏, 2023, 16(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202302006.htm

    HU Chenhui. Current geothermal field restoration and favorable exploration direction in the A Sag of the Weixinan Depression[J]. Complex Hydrocarbon Reservoirs, 2023, 16(2): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202302006.htm
    [19] 涂诗棋, 左银辉, 周勇水等. 东濮凹陷现今地温场及地热资源潜力[J]. 断块油气田, 2023, 30(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301014.htm

    TU Shiqi, ZUO Yinhui, ZHOU Yongshui, et al. Present geothermal field and geothermal resource potential of the Dongpu Sag[J]. Fault-Block Oil and Gas Field, 2023, 30(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202301014.htm
    [20] 李慧莉, 邱楠生, 金之钧, 等. 塔里木盆地的热史[J]. 石油与天然气地质, 2005, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009

    LI Huili, QIU Nansheng, JIN Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26(5): 613-617. doi: 10.3321/j.issn:0253-9985.2005.05.009
    [21] 李荣西, 廖永胜, 周义. 济阳坳陷石—二叠系热演化与生烃阶段[J]. 地球学报, 2001, 22(1): 85-90.

    LI Rongxi, LIAO Yongsheng, ZHOU Yi. Thermal history of the permo-carboniferous coal source rocks in Jiyang Depression, Shengli Oilfield[J]. Acta Geoscientia Sinica, 2001, 22(1): 85-90.
    [22] 张惠蓉, 刘国璧. 塔里木盆地地热场特征与油气[J]. 新疆石油地质, 1992, 13(4): 294-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199204001.htm

    ZHANG Huirong, LIU Guobi. The hydrocarbon occurrence and characteristics of ceothermal field in Tarim Basin[J]. Xinjiang Petroleum Geology, 1992, 13(4): 294-304. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD199204001.htm
    [23] 韩杨, 蒋文龙, 杨海波, 等. 准噶尔盆地南缘中段侏罗系烃源岩热演化史及其对天然气成藏的影响[J]. 油气地质与采收率, 2022, 29(5): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202205005.htm

    HAN Yang, JIANG Wenlong, YANG Haibo, et al. Thermal evolution and natural gas accumulation of Jurassic source rocks in middle of southern margin of Junggar Basin[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202205005.htm
    [24] 蒋有录, 熊继辉. 临清坳陷东部地温及有机质热演化特征[J]. 石油大学学报(自然科学版), 1997, 21(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX701.001.htm

    JIANG Youlu, XIONG Jihui. Characteristics of geotemperature and maturity of organic matter in the east part of Linqing Depression[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1997, 21(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX701.001.htm
    [25] 刘丽. 东濮凹陷及邻区凹陷上古生界热演化史与二次生烃史研究[D]. 西安: 西北大学, 2007.

    LIU Li. Research on the thermal evolution history and secondary hydrocarbon generation history of the Upper Paleozoic in the Dongpu Depression and its adjacent depressions[D]. Xi'an: Northwestern University, 2007.
    [26] 蒋文龙, 阿布力米提·依明, 卞保力, 等. 准噶尔盆地西北缘风城组烃源岩热演化生物标志化合物变化及意义[J]. 新疆石油地质, 2022, 43(6): 684-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206006.htm

    JIANG Wenlong, Ablimit·YIMING, BIAN Baoli, et al. Changes and significance of biomarkers in thermal evolution of Fengcheng Formation source rocks in northwestern margin of Junggar Basin[J]. Xinjiang Petroleum Geology, 2022, 43(6): 684-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202206006.htm
    [27] 任战利, 祁凯, 杨桂林, 等. 沉积盆地深层热演化历史与油气关系研究现状及存在问题[J]. 非常规油气, 2020, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202003001.htm

    REN Zhanli, QI Kai, YANG Guilin, et al. Research status and existing problems of relationship between deep thermal evolution history and oil and gas in sedimentary basins[J]. Unconventional Oil & Gas, 2020, 7(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202003001.htm
    [28] 罗昕. 塔里木盆地岩石热物性预测和现今地温场研究[D]. 北京: 中国石油大学, 2021.

    LUO Xin. Prediction of rock thermophysical properties and current geothermal field research in Tarim Basin[D]. Beijing: China University of Petroleum, 2021.
    [29] 潘泉涌. 塔里木盆地台盆区地温梯度分布特征[J]. 内蒙古石油化工, 2018, 44(10): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201810015.htm

    PAN Quanyong. Geotemperature gradient distribution of Tarim Basin, Northwest, China[J]. Inner Mongolia Petrochemical Industry, 2018, 44(10): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201810015.htm
    [30] 郝芳, 邹华耀, 方勇, 等. 断—压双控流体流动与油气幕式快速成藏[J]. 石油学报, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm

    HAO Fang, ZOU Huayao, FANG Yong, et al. Overpressure-fault controlled fluid flow and episodic hydrocarbon accumulation[J]. Acta Petrolei Sinica, 2004, 25(6): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200406009.htm
    [31] 赵靖舟. 幕式成藏理论的提出及其勘探意义[J]. 石油实验地质, 2005, 27(4): 315-320. doi: 10.11781/sysydz200504315

    ZHAO Jingzhou. Theory of episodic migration and accumulation: evidence and exploration significance[J]. Petroleum Geology & Experiment, 2005, 27(4): 315-320. doi: 10.11781/sysydz200504315
    [32] 郝芳, 邹华耀, 杨旭升, 等. 油气幕式成藏及其驱动机制和识别标志[J]. 地质科学, 2003, 38(3): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200303017.htm

    HAO Fang, ZOU Huayao, YANG Xusheng, et al. Episodic petroleum accumulation, its driving mechanisms and distinguishing markers[J]. Chinese Journal of Geology, 2003, 38(3): 403-412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200303017.htm
    [33] 潘长春, 周中毅, 范善发, 等. 塔里木盆地热历史[J]. 矿物岩石地球化学通报, 1996, 15(3): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.002.htm

    PAN Changchun, ZHOU Zhongyi, FAN Shanfa, et al. Thermal history of Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1996, 15(3): 150-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH603.002.htm
    [34] 邱楠生, 刘雯, 徐秋晨, 等. 深层—古老海相层系温压场与油气成藏[J]. 地球科学, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm

    QIU Nansheng, LIU Wen, XU Qiuchen, et al. Temperature-pressure field and hydrocarbon accumulation in deep-ancient marine strata[J]. Earth Science, 2018, 43(10): 3511-3525. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810015.htm
    [35] 刘宝静, 张健. 塔里木盆地地温演化及生油窗的影响因素分析[C]//中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会. 宁波: 中国地球物理学会, 2010.

    LIU Baojing, ZHANG Jian. Analysis of factors affecting the geothermal evolution and oil generation window in the Tarim Basin[C]// The 26th Annual Meeting of the Chinese Geophysical Society, the 13th Academic Conference of the Chinese Seismological Society. Ningbo: Chinese Geophysical Society, 2010.
    [36] 庄新兵, 顾忆, 邵志兵, 等. 塔里木盆地地温场对油气成藏过程的控制作用: 以古城墟隆起为例[J]. 石油学报, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htm

    ZHUANG Xinbing, GU Yi, SHAO Zhibing, et al. Control effect of geothermal field on hydrocarbon accumulation process in Tarim Basin: a case study of Guchengxu Uplift[J]. Acta Petrolei Sinica, 2017, 38(5): 502-511. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201705003.htm
    [37] 吴高奎, 张忠民, 林畅松, 等. 塔里木盆地塔北隆起区中生界沉积演化特征[J]. 石油与天然气地质, 2022, 43(4): 845-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204009.htm

    WU Gaokui, ZHANG Zhongmin, LIN Changsong, et al. Evolution of Mesozoic sedimentary fill in the Tabei Uplift region, Tarim Basin[J]. Oil & Gas Geology, 2022, 43(4): 845-858. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204009.htm
    [38] 孙龙. 塔北地区多个不整合面重叠区关键构造期剥蚀量恢复和古构造演化研究[D]. 西安: 西北大学, 2020.

    SUN Long. Study on the restoration of erosion thickness and palaeostructural evolution in the key tectonic period of multiple unconformity plane overlapping areas in the Tabei area[D]. Xi'an: Northwest University, 2020.
    [39] 张水昌, 何坤, 王晓梅, 等. 深层多途径复合生气模式及潜在成藏贡献[J]. 天然气地球科学, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm

    ZHANG Shuichang, HE Kun, WANG Xiaomei, et al. The multi-path gas generation model and its potential contribution to petroleum accumulation in deep formations[J]. Natural Gas Geoscience, 2021, 32(10): 1421-1435. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110001.htm
    [40] 赵靖舟. 幕式成藏的机理和规律探讨[J]. 天然气工业, 2006, 26(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200603004.htm

    ZHAO Jingzhou. Mechanism and regularity of episodic reservoir-ing[J]. Natural Gas Industry, 2006, 26(3): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200603004.htm
    [41] 赵阳, 徐小龙, 阙仕煜, 等. Ⅰ型有机质生油增压数学模型建立与应用[J]. 油气地质与采收率, 2023, 30(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202305007.htm

    ZHAO Yang, XU Xiaolong, QUE Shiyu, et al. Establishment and application of mathematical model of oil generated overpressure by type I organic matter[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202305007.htm
    [42] 张焕旭, 陈世加, 张亚, 等. 烃源岩生烃增压研究进展[J]. 地质科技情报, 2018, 37(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802027.htm

    ZHANG Huanxu, CHEN Shijia, ZHANG Ya, et al. Research progress of the overpressure caused by hydrocarbon generation[J]. Geological Science and Technology Information, 2018, 37(2): 199-207. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802027.htm
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  64
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2024-04-23
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回