留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应

刘清梅 李嘉成 蒋文敏 熊永强

中国学术期刊(光盘版)电子杂志社. 《中国优秀博硕士学位论文全文数据库》(CDMD)总体介绍[J]. 石油实验地质, 2002, 24(3): 288-288. doi: 10.11781/sysydz200203288
引用本文: 刘清梅, 李嘉成, 蒋文敏, 熊永强. 气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应[J]. 石油实验地质, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621
Citation: LIU Qingmei, LI Jiacheng, JIANG Wenmin, XIONG Yongqiang. Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2024, 46(3): 621-629. doi: 10.11781/sysydz202403621

气体中甲烷单组分的色谱—真空低温富集方法及其同位素分馏效应

doi: 10.11781/sysydz202403621
基金项目: 

国家自然科学基金项目“深层油气中甲烷团簇同位素地球化学研究” 42073065

详细信息
    作者简介:

    刘清梅(1996—),女,博士生,从事团簇同位素地球化学研究。E-mail: liuqingmei@gig.ac.cn

    通讯作者:

    熊永强(1967—),男,博士,研究员,从事分子有机地球化学研究。E-mail: xiongyq@gig.ac.cn

  • 中图分类号: TE135

Chromatography-vacuum low temperature method of methane enrichment and isotopic fractionation in gas samples

  • 摘要: 甲烷(CH4)团簇同位素分析在气候变化、能源勘探和行星生命等领域中发挥了重要作用。样品中CH4的纯度直接了影响高分辨质谱团簇同位素分析的精度和准确性。针对气样中CH4组分的富集纯化难题,根据气相色谱(GC)组分分离原理,实时监测组分峰形,进一步优化了载气线速、进样量等条件。同时,通过外标法量化回收率,GC组分分析验证纯度,保证纯化的有效性。通过优化色谱—真空低温富集制备方法,确定了IBEX系统载气最佳线速为12 mL/min,CH4进样量需小于12 mL等实验条件,可视化GC峰形确保CH4峰与相邻N2干扰峰基本分离,实现了CH4单组分的高纯富集。当气样中CH4含量小于70%而空气含量较高时,需要进行二次纯化以提高CH4纯度。讨论了5Å分子筛等吸附剂在纯化过程中可能引起CH4同位素分馏的原因,并通过适当延长CH4收集时间来消除5Å分子筛干扰。目前,该方法单次纯化过程约90 min,CH4的回收率和纯度分别为90.1%~95.7%和97.3%~98.9%,对同位素组成(δ13CVPDBδDVSMOW、Δ13CH3D和Δ12CH2D2)的差异均小于质谱仪的分析误差,几乎可以忽略不计。

     

  • 利益冲突声明/Conflict of Interests
    所有作者声明不存在利益冲突。
    All authors disclose no relevant conflict of interests.
    作者贡献/Authors’Contributions
    刘清梅、蒋文敏参与实验设计;刘清梅、李嘉成完成实验操作;刘清梅、蒋文敏、熊永强参与论文写作和修改。所有作者均阅读并同意最终稿件的提交。
    The experiment was designed by LIU Qingmei and JIANG Wenmin. The experimental operation was completed by LIU Qingmei and LI Jiacheng. The manuscript was drafted and revised by LIU Qingmei, JIANG Wenmin and XIONG Yongqiang. All authors have read the last version of the paper and consented to its submission.
  • 图  1  甲烷纯化系统结构示意

    Figure  1.  Schematic structure of methane purification system

    图  2  甲烷同位素分析峰形

    Figure  2.  Peak shapes of methane isotopic analysis

    图  3  纯化气样SG-1甲烷纯化回收率

    Figure  3.  Methane purification recovery rate of purified gas sample SG-1

    图  4  混合气样SG-2纯化前后气相色谱(GC)组分分析

    Figure  4.  GC component analysis of mixed gas sample SG-2 before and after purification

    图  5  气相色谱的板高与载气线速关系

    Figure  5.  Relation curve between plate height and carrier gas line speed for gas chromatography

    图  6  气相色谱峰展宽效应

    Figure  6.  Peak broadening effect in gas chromatography

    表  1  甲烷气样SG-1纯化前后同位素组成对比

    Table  1.   Comparison of isotopic composition of methane gas sample SG-1 before and after purification

    δ13CVPDB/‰ δDVSMOW/‰ Δ13CH3D/‰ Δ12CH2D2/‰ 样品数
    纯化前 -43.23 -182.78 2.65 2.14 5
    纯化后 -43.30 -182.82 2.91 1.50 5
    下载: 导出CSV

    表  2  通过改变载气线速纯化气样后甲烷回收率及纯度数据

    Table  2.   Recovery and purity data of methane after purification of gas sample by varying carrier gas line speed

    样品 体积/mL 柱温/℃ 载气流速/(mL/min) 峰面积 回收率/% 纯度/%
    O2 N2 CH4
    SG-1 6 30 30 80.8 310.2 22 372.9 82.1 98.3
    MG-20% 6 30 30 183.4 3 020.3 18 167.3 83.6 85.0
    SG-1 6 30 20 99.1 347.4 23 279.6 85.5 98.1
    MG-20% 6 30 20 187.2 1 804.5 18 913.2 87.1 90.5
    SG-1 6 30 15 145.9 408.3 24 157.7 88.7 97.8
    MG-20% 6 30 15 195.7 1 076.7 19 235.5 88.6 93.8
    SG-1 6 30 12 112.2 353.6 25 940.1 95.2 98.2
    MG-20% 6 30 12 177.3 415.1 20 831.4 95.9 97.2
    SG-1 6 30 10 136.8 348.1 25 673.3 94.2 98.1
    MG-20% 6 30 10 189.5 394.4 20 374.8 93.8 97.2
    SG-1 9 30 12 92.7 384.2 38 221.7 93.1 98.8
    SG-2 9 30 12 109.8 401.1 18 284.2 95.0 97.3
    SG-1 12 30 12 112.4 434.1 47 589.2 86.8 98.9
    SG-2 12 30 12 87.3 397.5 24 442.7 94.8 98.1
    SG-1 18 30 12 124.4 468.3 70 179.5 85.1 99.2
    SG-2 18 30 12 97.6 445.8 36 950.7 95.1 98.6
    MG-10% 8 30 12 128.4 331.3 30 912.2 94.4 98.5
    MG-20% 8 30 12 133.6 358.2 27 098.3 93.2 98.2
    MG-30% 8 30 12 115.1 3 197.8 23 289.8 91.7 87.5
    MG-30%-2nd 8 30 12 88.3 405.6 22 868.9 90.0 97.9
    MG-50% 8 30 12 150.9 5 266.9 16 851.1 93.4 75.7
    MG-50%-2nd 8 30 12 73.6 409.4 16 491.9 91.4 97.2
    注:样品名中,百分比表示气样中N2含量,“2nd”表示二次纯化。
    下载: 导出CSV

    表  3  甲烷不充分回收时同位素组成

    Table  3.   Isotopic composition of CH4 in inadequate recovery

    气样 体积/mL 采样时间/min 回收率/% 纯度/% δ13CVPDB/‰
    SG-1 6 5 36.3 98.1 -41.52
    SG-1 6 10 54.0 98.6 -42.22
    SG-1 6 17 69.4 98.4 -42.68
    SG-1 6 30 88.6 97.8 -42.89
    SG-1 6 40 90.2 98.0 -43.02
    SG-1 6 50 94.1 97.5 -43.39
    注:SG-1初始同位素组成δ13CVPDB-initial=-43.26‰。
    下载: 导出CSV
  • [1] DOUGLAS P M J, STOLPER D A, SMITH D A, et al. Diverse origins of arctic and subarctic methane point source emissions identified with multiply-substituted isotopologues[J]. Geochimica et Cosmochimica Acta, 2016, 188: 163-188. doi: 10.1016/j.gca.2016.05.031
    [2] BEAUDRY P, STEFÁNSSON A, FIEBIG J, et al. High temperature generation and equilibration of methane in terrestrial geothermal systems: evidence from clumped isotopologues[J]. Geochimica et Cosmochimica Acta, 2021, 309: 209-234. doi: 10.1016/j.gca.2021.06.034
    [3] GIUNTA T, YOUNG E D, LABIDI J, et al. Extreme methane clumped isotopologue bio-signatures of aerobic and anaerobic methanotrophy: insights from the Lake Pavin and the Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2022, 338: 34-53. doi: 10.1016/j.gca.2022.09.034
    [4] YOUNG E D, KOHL I E, SHERWOOD LOLLAR B, et al. The relative abundances of resolved l2CH2D2 and 13CH3D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases[J]. Geochimica et Cosmochimica Acta, 2017, 203: 235-264. doi: 10.1016/j.gca.2016.12.041
    [5] 马东民, 王馨, 滕金祥, 等. 镜煤和暗煤与甲烷界面作用实验研究: 以民和盆地低阶煤为例[J]. 油气藏评价与开发, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm

    MA Dongmin, WANG Xin, TENG Jinxiang, et al. Experimental study on interfacial interaction between methane and vitrinite and durain: a case study of bituminous coal in Minhe Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 556-563. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204002.htm
    [6] 杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm

    YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil and Gas Field, 2023, 30(5): 799-807. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202305012.htm
    [7] 毛港涛, 李治平, 王凯, 等. 全可视化双反应釜内甲烷水合物生成与分解特征研究[J]. 特种油气藏, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm

    Mao Gangtao, Li Zhiping, Wang Kai, et al. Study on the generation and decomposition characteristics of methane hydrate in Fully Visible Dual Reactor[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202303009.htm
    [8] 史利燕, 李卫波, 康琴琴, 等. CH4-煤吸附/解吸过程视电阻率变化的实验研究[J]. 油气藏评价与开发, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm

    SHI Liyan, LI Weibo, KANG Qinqin, et al. Experimental study on variation of apparent resistivity in CH4-coal adsorption/desorption process[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 572-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202204004.htm
    [9] 张添锦, 王延峰, 李军, 等. 注CO2提高页岩吸附甲烷采收率核磁共振实验[J]. 特种油气藏, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015

    Zhang Tianjin, Wang Yanfeng, Li Jun, et al. Nuclear magnetic resonance experiment for enhanced recovery af adsorbed methane from shale through carbon dioxide injection[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 113-120. doi: 10.3969/j.issn.1006-6535.2023.05.015
    [10] WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291-314.
    [11] EILER J M. A practical guide to clumped isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2006, 70(S18): A157.
    [12] EILER J M. "Clumped-isotope" geochemistry—The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 309-327.
    [13] EILER J M, CLOG M, MAGYAR P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56. doi: 10.1016/j.ijms.2012.10.014
    [14] YOUNG E D, RUMBLE Ⅲ D, FREEDMAN P, et al. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases[J]. International Journal of Mass Spectrometry, 2016, 401: 1-10. doi: 10.1016/j.ijms.2016.01.006
    [15] ONO S, WANG D T, GRUEN D S, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2014, 86(13): 6487-6494. doi: 10.1021/ac5010579
    [16] GONZALEZ Y, NELSON D D, SHORTER J H, et al. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy[J]. Analytical Chemistry, 2019, 91(23): 14967-14974. doi: 10.1021/acs.analchem.9b03412
    [17] GILBERT A, YAMADA K, YOSHIDA N. Exploration of intramolecular 13C isotope distribution in long chain n-alkanes (C11-C31) using isotopic 13C NMR[J]. Organic Geochemistry, 2013, 62: 56-61. doi: 10.1016/j.orggeochem.2013.07.004
    [18] MARTIN G J, GUILLOU C, MARTIN M L, et al. Natural factors of isotope fractionation and the characterization of wines[J]. Journal of Agricultural and Food Chemistry, 1988, 36(2): 316-322. doi: 10.1021/jf00080a019
    [19] GILBERT A, SILVESTRE V, SEGEBARTH N, et al. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose[J]. Plant, Cell & Environment, 2011, 34(7): 1104-1112.
    [20] GILBERT A. The organic isotopologue frontier[J]. Annual Review of Earth and Planetary Sciences, 2021, 49(1): 435-464. doi: 10.1146/annurev-earth-071420-053134
    [21] STOLPER D A, SESSIONS A L, FERREIRA A A, et al. Combined 13C-D and D-D clumping in methane: methods and preliminary results[J]. Geochimica et Cosmochimica Acta, 2014, 126: 169-191. doi: 10.1016/j.gca.2013.10.045
    [22] STOLPER D A, LAWSON M, DAVIS C L, et al. Formation temperatures of thermogenic and biogenic methane[J]. Science, 2014, 344(6191): 1500-1503. doi: 10.1126/science.1254509
    [23] WANG D T, GRUEN D S, LOLLAR B S, et al. Nonequilibrium clumped isotope signals in microbial methane[J]. Science, 2015, 348(6233): 428-431. doi: 10.1126/science.aaa4326
    [24] WANG D T, WELANDER P V, ONO S. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)[J]. Geochimica et Cosmochimica Acta, 2016, 192: 186-202. doi: 10.1016/j.gca.2016.07.031
    [25] JENNINGS W. Analytical gas chromatography[M]. Orlando: Academic Press Inc., 1987.
    [26] CHEN Zhigang, YIN Xijie, ZHOU Youping. Effects of GC temperature and carrier gas flow rate on on-line oxygen isotope measurement as studied by on-column CO injection[J]. Journal of Mass Spectrometry, 2015, 50(8): 1023-1030. doi: 10.1002/jms.3617
    [27] WERRES T, SCHMIDT T C, TEUTENBERG T. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution[J]. Journal of Chromatography A, 2021, 1641: 461965. doi: 10.1016/j.chroma.2021.461965
    [28] STRАPOĆD, SCHIMMELMANN A, MASTALERZ M. Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal[J]. Organic Geochemistry, 2006, 37(2): 152-164. doi: 10.1016/j.orggeochem.2005.10.002
    [29] XIA Xinyu, TANG Yongchun. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 2012, 77: 489-503. doi: 10.1016/j.gca.2011.10.014
    [30] 苏现波, 陈润, 林晓英, 等. 煤吸附13CH412CH4的特性曲线及其应用[J]. 煤炭学报, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021

    SU Xianbo, CHEN Run, LIN Xiaoying, et al. The adsorption characteristic curves of 13CH4 and 12CH4 on coal and its application[J]. Journal of China Coal Society, 2007, 32(5): 539-543. doi: 10.3321/j.issn:0253-9993.2007.05.021
    [31] WANG Xiaofeng, LI Xiaofu, WANG Xiangzeng, et al. Carbon isotopic fractionation by desorption of shale gases[J]. Marine and Petroleum Geology, 2015, 60: 79-86. doi: 10.1016/j.marpetgeo.2014.11.003
    [32] MASON E A, KRONSTADT B. Graham's laws of diffusion and effusion[J]. Journal of Chemical Education, 1967, 44(12): 740. doi: 10.1021/ed044p740
    [33] GUNTER B D, GLEASON J D. Isotope fractionation during gas chromatographic separations[J]. Journal of Chromatographic Science, 1971, 9(3): 191-192. doi: 10.1093/chromsci/9.3.191
    [34] CUI Xiaojun, MARC BUSTIN R, DIPPLE G. Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data[J]. Fuel, 2004, 83(3): 293-303. doi: 10.1016/j.fuel.2003.09.001
    [35] WANG Xiaofeng, LIU Peng, MENG Qiang, et al. Physical selectivity on isotopologues of gaseous alkanes by shale pore network: evidence from dynamic adsorption process of natural gas[J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104252. doi: 10.1016/j.jngse.2021.104252
    [36] CRANK J. The mathematics of diffusion[M]. 2nd ed. Oxford: Clarendon Press, 1975.
    [37] 程付启, 金强. 成藏后天然气组分与同位素的分馏效应研究[J]. 天然气地球科学, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022

    CHENG Fuqi, JIN Qiang. Composition and isotope fractionations of accumulated natural gas and their significance[J]. Natural Gas Geoscience, 2005, 16(4): 522-525. doi: 10.3969/j.issn.1672-1926.2005.04.022
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  125
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2024-03-28
  • 刊出日期:  2024-05-28

目录

    /

    返回文章
    返回