留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔里木盆地西南地区和田古隆起改造过程及其地质意义

刘士林 邓铭哲 蔡芃睿 曹日洲 周雨双 沙旭光

刘士林, 邓铭哲, 蔡芃睿, 曹日洲, 周雨双, 沙旭光. 塔里木盆地西南地区和田古隆起改造过程及其地质意义[J]. 石油实验地质, 2025, 47(3): 466-478. doi: 10.11781/sysydz2025030466
引用本文: 刘士林, 邓铭哲, 蔡芃睿, 曹日洲, 周雨双, 沙旭光. 塔里木盆地西南地区和田古隆起改造过程及其地质意义[J]. 石油实验地质, 2025, 47(3): 466-478. doi: 10.11781/sysydz2025030466
LIU Shilin, DENG Mingzhe, CAI Pengrui, CAO Rizhou, ZHOU Yushuang, SHA Xuguang. Transformation processes of Hetian paleo-uplift in southwestern Tarim Basin and its geological significance[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 466-478. doi: 10.11781/sysydz2025030466
Citation: LIU Shilin, DENG Mingzhe, CAI Pengrui, CAO Rizhou, ZHOU Yushuang, SHA Xuguang. Transformation processes of Hetian paleo-uplift in southwestern Tarim Basin and its geological significance[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 466-478. doi: 10.11781/sysydz2025030466

塔里木盆地西南地区和田古隆起改造过程及其地质意义

doi: 10.11781/sysydz2025030466
基金项目: 

国家自然科学基金企业创新发展联合基金“三大盆地深层—超深层海相油气高效勘探开发基础研究” U24B6001

详细信息
    作者简介:

    刘士林(1982—),男,博士,高级工程师,从事盆地分析与油区构造解析研究。E-mail: liushilin@sinopec.com

    通讯作者:

    邓铭哲(1990-), 男, 博士, 高级工程师, 从事含油气盆地分析研究。E-mail: dmz527214955@126.com

  • 中图分类号: TE121.2

Transformation processes of Hetian paleo-uplift in southwestern Tarim Basin and its geological significance

  • 摘要: 塔里木盆地西南地区古生代经历了复杂的建造—改造过程,古隆起迭加改造过程认识的不清晰制约了区域内油气勘探的突破。为解决此问题,基于最新的地震、钻井资料,开展了地震解释、构造分析等一系列工作,分层、分期恢复区域内剥蚀量的变化过程,刻画了和田古隆起的形成、改造过程;基于盆缘岩浆岩年龄、形成环境分析,讨论了古隆起演化及改造的动力学机制;结合油气勘探情况,探讨了古隆起迭加改造的控油气作用。研究认为:(1)塔西南地区剥蚀中心发生过明显的迁移,加里东中期Ⅰ幕局限于盆地西南缘,加里东中期Ⅲ幕剥蚀区域向北扩展,海西早期剥蚀中心向东迁移,海西晚期,剥蚀中心位于盆地西北部,喜马拉雅期剥蚀中心位于现今巴楚隆起所在区域;(2)和田古隆起具有两阶段演化特征,加里东中期Ⅲ幕为陆缘隆起,海西早期为陆内隆起,和田古隆起主要遭受盆地西北缘麦西古隆起和盆地中部巴楚隆起的改造,调整了和田古隆起控制形成的早期古地貌;(3)古隆起的迁移演化及不同古隆起间的迭加改造,控制了不同储盖组合的分布,和田古隆起、麦西古隆起、巴楚古隆起间的构造枢纽带是油气聚集的有利部位,应成为下一步的勘探方向。

     

  • 图  1  塔里木盆地西南地区区域地质概况

    a.构造单元划分;b.区域地层岩性柱状图。

    Figure  1.  Regional geological overview of southwestern Tarim Basin

    图  2  塔里木盆地西南地区主要不整合面波阻特征

    剖面位置见图 1

    Figure  2.  Wave impedance characteristics of main unconformity surfaces in southwestern Tarim Basin

    图  3  塔里木盆地西南地区奥陶系底界现今构造形态

    Figure  3.  Current structural form at the bottom of Ordovician in southwestern Tarim Basin

    图  4  塔里木盆地巴麦地区各地层剥蚀厚度

    a.中—下奥陶统;b.上奥陶统;c.志留系—中泥盆统;d.二叠系顶部;e.古近系。

    Figure  4.  Denuded strata thickness in Bachu-Maigaiti area of Tarim Basin

    图  5  塔里木盆地巴麦地区不同构造期剥蚀厚度

    a.加里东中期Ⅰ幕;b.加里东中期Ⅲ幕;c.加里东晚期—海西早期;d.海西晚期;e.喜马拉雅早期。

    Figure  5.  Denuded strata thickness of different tectonic periods in Bachu-Maigaiti area, Tarim Basin

    图  6  塔里木盆地西南地区隆坳演化过程

    a.加里东中期Ⅰ幕古隆坳格局恢复结果;b.加里东中期Ⅲ幕古隆坳格局恢复结果;c.加里东晚期—海西早期古隆坳格局恢复结果;d.海西晚期古隆坳格局恢复结果;e.喜马拉雅早期古隆坳格局恢复结果;f. 现今盆地隆坳格局。

    Figure  6.  Evolution process of uplift and downwarping structures in southwestern Tarim Basin

    图  7  塔里木盆地西南地区南西—北东方向隆坳演化剖面

    剖面位置见图 1AA’

    Figure  7.  Evolution profiles of southwestern Tarim Basin in southwest-northeast direction

    图  8  西昆仑花岗岩的A/NK—A/CNK判别图(a)和Rb—(Y+Nb)判别图(b)

    图a底图据MANIAR和PICCOLI[19];图b底图据PEARCE等[20]

    Figure  8.  A/NK-A/CNK discrimination diagram (a) and Rb- (Y+Nb) discrimination diagram (b) of granite in western Kunlun Mountain

    图  9  塔里木盆地西南地区巴探4井石炭系油气充注事件

    据参考文献[40]修改。

    Figure  9.  Carboniferous hydrocarbon charging events in well Batan-4 in southwestern Tarim Basin

    图  10  塔里木盆地西南地区古隆起叠合图

    Figure  10.  Superimposed map of paleo-uplifts in southwestern Tarim Basin

    表  1  根据地层厚度趋势法确定塔里木盆地西南地区不同层系的剥蚀量

    Table  1.   Denudation calculations of different strata in southwestern Tarim Basin based on strata thickness variation trend

    大地坐标系 剥蚀量/m
    横坐标 纵坐标 O1-2 O3 S-D C-P Kz
    44821051 4516448 230.8 825.4 0.0 69.0 0.0
    44829330 4529427 221.9 927.3 0.0 74.9 0.0
    44834729 4546732 211.3 967.4 0.0 80.0 34.2
    44839409 4562728 200.7 975.4 0.0 85.9 59.7
    44846248 4576068 191.1 952.2 0.0 93.6 91.1
    44854887 4589768 177.7 908.4 6.8 105.5 131.9
    44863887 4605631 157.3 851.4 87.8 116.4 584.1
    44872166 4619692 136.9 785.1 157.3 126.8 494.2
    44882965 4637358 124.0 692.5 213.5 119.0 413.3
    44890164 4651058 118.3 560.2 295.6 68.2 403.3
    44896284 4663316 122.4 444.9 438.4 140.4 365.3
    44903123 4674853 134.4 390.9 480.7 145.9 299.7
    44911762 4688914 123.6 353.6 351.7 72.4 294.7
    44919682 4702975 105.5 336.6 240.3 67.7 426.0
    44928321 4718085 91.6 319.4 156.0 168.1 646.8
    44935520 4731425 78.1 296.5 88.8 559.2 216.3
    44942719 4744404 73.6 272.3 39.6 226.4 0.0
    44952799 4760988 72.0 238.2 0.0 675.7 0.0
    44962878 4777573 58.0 194.7 0.0 851.5 0.0
    下载: 导出CSV

    表  2  根据米兰科维奇旋回分析确定塔里木盆地西南地区不同层系的剥蚀量

    Table  2.   Denudation calculations of different strata in southwestern Tarim Basin based on Milankovitch cycle analysis

    钻井名 剥蚀量/m
    O1-2 O3 S-D C-P Kz
    玉东4 120.5 540 252 20 0
    玉北3 126.5 570 205 60 0
    玉北3-1 125.5 560 210 60 0
    玉北2 160.5 632 148 140 0
    玉北9 144.0 640 30 240 0
    玉北6A 155.5 675 75 235 0
    玉北1-1 165.0 757 90 200 0
    玉北1 165.5 740 95 150 0
    玉北1-2x 161.5 735 100 100 0
    玛参1 112.5 576 160 0 0
    玉北10 164.25 755 92 235 0
    玉北5 140.0 710 48 160 0
    玉北7 160.5 770 94 165 0
    胜和2 169.2 792 100 235 0
    玉北4 150.0 755 135 200 0
    玉北8 140.5 855 125 25 0
    皮山北2 104.5 650 337 0 0
    和2 89.3 452 310 420 0
    巴东4 39.8 390 170 300 300
    和4 49.8 210 70 250 475
    玛北1 137.5 392 430 155 490
    巴探5 87.5 463 330 320 580
    康2 88.8 522 40 550 620
    巴开1 125.4 498 50 1 000 550
    珈1 76.5 500 0 1 180 330
    方1 120.1 276 70 670 680
    下载: 导出CSV

    表  3  塔里木盆地西南地区不同古隆起关键成藏要素

    Table  3.   Key hydrocarbon accumulation factors of different paleo-uplifts in southwestern Tarim Basin

    古隆起 奥陶系与上覆地层接触关系 烃源岩 主成藏期 典型油气藏 成藏组合
    巴楚隆起 O3s/O3l/O1-2y 海西晚期、喜马拉雅期 和田河、巴探5 石炭系、奥陶系
    麦西古隆起 S/O1-2y 寒武系、石炭系 海西晚期、喜马拉雅期 巴什托(群7)、亚松迪(巴参1) 石炭系、泥盆系
    和田古隆起 C1b/O3l/O1-2y 寒武系 海西晚期、喜马拉雅期 罗斯2 奥陶系
    C1b/O1-2y 寒武系 加里东晚期、海西晚期 玉北1 奥陶系
    下载: 导出CSV
  • [1] 能源, 邬光辉, 黄少英, 等. 再论塔里木盆地古隆起的形成期与主控因素[J]. 天然气工业, 2016, 36(4): 27-34.

    NENG Yuan, WU Guanghui, HUANG Shaoying, et al. Formation stage and controlling factors of the paleo-uplifts in the Tarim Basin: a further discussion[J]. Natural Gas Industry, 2016, 36(4): 27-34.
    [2] 严佳凯, 陈汉林, 程晓敢, 等. 塔西南地区古隆起迁移及对造山作用和储集层发育的启示[J]. 石油勘探与开发, 2023, 50(1): 89-99.

    YAN Jiakai, CHEN Hanlin, CHENG Xiaogan, et al. Migration of paleo-uplift in southwestern Tarim Basin and its implications for orogenesis and reservoir development, NW China[J]. Petroleum Exploration and Development, 2023, 50(1): 89-99.
    [3] 何登发, 周新源, 杨海军, 等. 塔里木盆地克拉通内古隆起的成因机制与构造类型[J]. 地学前缘, 2008, 15(2): 207-221.

    HE Dengfa, ZHOU Xingyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.
    [4] 郑孟林, 王毅, 金之钧, 等. 塔里木盆地叠合演化与油气聚集[J]. 石油与天然气地质, 2014, 35(6): 925-934.

    ZEHNG Menglin, WANG Yi, JING Zhijun, et al. Superimposition, evolution and petroleum accumulation of Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 925-934.
    [5] 郭颖. 塔里木盆地和田古隆起构造演化及成因机制[D]. 北京: 中国石油大学(北京), 2016.

    GUO Ying. Tectonic evolution and formation mechanism of Hetian paleo-uplift in Tarim Basin[D]. Beijing: China University of Petroleum, Beijing, 2016.
    [6] 何碧竹, 焦存礼, 许志琴, 等. 塔里木盆地显生宙古隆起的分布及迁移[J]. 地学前缘, 2015, 22(3): 277-289.

    HE Bizhu, JIAO Cunli, XU Zhiqin, et al. Distribution and migration of the Phanerozoic palaeo-uplifts in the Tarim Basin, NW China[J]. Earth Science Frontiers, 2015, 22(3): 277-289.
    [7] 杜德道, 李洪辉, 闫磊, 等. 塔里木盆地构造变形迁移与三大地质事件的关系及其地质意义[J]. 地质科学, 2023, 58(2): 379-397.

    DU Dedao, LI Honghui, YAN Lei, et al. Deformation migration and three major geological events in Tarim Basin and their geological significance[J]. Chinese Journal of Geology, 2023, 58(2): 379-397.
    [8] 杨宪彰, 能源, 徐振平, 等. 塔里木盆地三大构造旋回油气成藏特征[J]. 现代地质, 2024, 38(2): 287-299.

    YANG Xianzhang, NENG Yuan, XU Zhenping, et al. Characteristics of the hydrocarbon accumulation formed through the three structural cycles in Tarim Basin[J]. Geoscience, 2024, 38(2): 287-299.
    [9] 马海陇, 蒋林, 丁文龙, 等. 塔里木盆地兰尕与和田河断裂带变形特征及成藏演化模式[J]. 石油与天然气地质, 2024, 45(5): 1259-1274.

    MA Hailong, JIANG Lin, DING Wenlong, et al. Deformation characteristics and hydrocarbon accumulation models of the Lan'ga and Hotan River fault zones in the Tarim Basin[J]. Oil & Gas Geology, 2024, 45(5): 1259-1274.
    [10] 李慧莉, 高键, 曹自成, 等. 塔里木盆地顺托果勒低隆起走滑断裂带流体时空分布及油气成藏意义[J]. 地学前缘, 2023, 30(6): 316-328.

    LI Huili, GAO Jian, CAO Zicheng, et al. Spatial-temporal distribution of fluid activities and its significance for hydrocarbon accumulation in the strike-slip fault zones, Shuntuoguole low-uplift, Tarim Basin[J]. Earth Science Frontiers, 2023, 30(6): 316-328.
    [11] 姜鹍鹏, 刘亚雷, 周新桂, 等. 塔里木盆地柯坪断隆早古生代断裂构造特征: 以柯坪南地区为例[J]. 现代地质, 2024, 38(5): 1248-1257.

    JIANG Kunpeng, LIU Yalei, ZHOU Xingui, et al. Fault structural characteristics of the Early Paleozoic in the Keping fault-uplift, Tarim Basin: a case study in the southern Keping area[J]. Geoscience, 2024, 38(5): 1248-1257.
    [12] 焦志峰, 高志前. 塔里木盆地主要古隆起的形成、演化及控油气地质条件分析[J]. 天然气地球科学, 2008, 19(5): 639-646.

    JIAO Zhifeng, GAO Zhiqian. Formation, evolution and hydrocarbon-controlling geological conditions of major paleohighs, Tarim Basin[J]. Natural Gas Geoscience, 2008, 19(5): 639-646.
    [13] 何登发, 李德生, 童晓光, 等. 多期叠加盆地古隆起控油规律[J]. 石油学报, 2008, 29(4): 475-488.

    HE Dengfa, LI Dengsheng, TONG Xiaoguang, et al. Accumulation and distribution of oil and gas controlled by paleo-uplift in poly-history superimposed basin[J]. Acta Petrolei Sinica, 2008, 29(4): 475-488.
    [14] 崔海峰, 田雷, 刘军, 等. 塔西南坳陷奥陶纪构造活动与油气成藏[J]. 石油地球物理勘探, 2017, 52(4): 834-840.

    CUI Haifeng, TIAN Lei, LIU Jun, et al. Ordovician tectonic activities and oil and gas accumulation in the southwest depression of Tarim Basin[J]. Oil Geophysical Prospecting, 2017, 52(4): 834-840.
    [15] 邬光辉, 李启明, 肖中尧, 等. 塔里木盆地古隆起演化特征及油气勘探[J]. 大地构造与成矿学, 2009, 33(1): 124-130.

    WU Guanghui, LI Qiming, XIAO Zhongyao, et al. The evolution characteristics of palaeo-uplifts in Tarim Basin and its exploration directions for oil and gas[J]. Geotectonica et Metallogenia, 2009, 33(1): 124-130.
    [16] 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761

    ZHANG Zhongpei, XU Qinqi, LIU Shilin, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area, Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4): 761-769. doi: 10.11781/sysydz202304761
    [17] 张坦, 姚威, 赵永强, 等. 塔里木盆地巴麦地区石炭系卡拉沙依组年代标尺及地层剥蚀厚度精细计算[J]. 石油与天然气地质, 2023, 44(4): 1054-1066.

    ZHANG Tan, YAO Wei, ZHAO Yongqiang, et al. Time scale and denudation thickness calculation of Carboniferous Kalashayi Formation in the Bamai area, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(4): 1054-1066.
    [18] 石巨业, 金之钧, 刘全有, 等. 天文旋回在页岩油勘探及富有机质页岩地层等时对比中的应用[J]. 地学前缘, 2023, 30(4): 142-151.

    SHI Juye, JIN Zhijun, LIU Quanyou, et al. Application of astronomical cycles in shale oil exploration and in high-precision stratigraphic isochronous comparison of organic-rich fine-grain sedimentary rocks[J]. Earth Science Frontiers, 2023, 30(4): 142-151.
    [19] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643.
    [20] PEARCE J A, HARRIS N B W, TINDLe A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984(4): 956-983.
    [21] LIU Z, JIANG Y H, JIA R Y, et al. Origin of Middle Cambrian and Late Silurian potassic granitoids from the western Kunlun orogen, northwest China: a magmatic response to the Proto-Tethys evolution[J]. Mineralogy & Petrology, 2014, 108(1): 91-110.
    [22] 高晓峰, 校培喜, 康磊, 等. 西昆仑大同西岩体成因: 矿物学、地球化学和锆石U-Pb年代学制约[J]. 岩石学报, 2013, 29(9): 3065-3079.

    GAO Xiaofeng, XIAO Peixi, KANG Lei, et al. Origin of Datongxi pluton in the West Kunlun: constraints from mineralogy, elemental geochemistry and zircon U-Pb age[J]. Acta Petrologica Sinica, 2013, 29(9): 3065-3079.
    [23] 张其超. 西昆仑造山带(东段)早古生代岩浆岩成因与区域地质演化[D]. 北京: 中国地质科学院, 2019.

    ZHANG Qichao. The genesis and regional geological evolution of Early Paleozoic magmatic rocks in the western Kunlun orogenic belt (eastern section)[D]. Beijing: Chinese Academy of Geological Sciences, 2019.
    [24] 胡雪原. 新疆铁克里克东段花岗质岩体与暗色微粒包体的成因及其构造意义[D]. 乌鲁木齐: 新疆大学, 2018.

    HU Xueyuan. The genesis and tectonic significance of granitic plutons and dark microgranular enclaves in the eastern section of Tiekelike, Xinjiang[D]. Urumqi: Xinjiang University, 2018.
    [25] 刘成军. 西昆仑造山带(西段)及周缘早古生代—早中生代物质组成与构造演化[D]. 西安: 长安大学, 2015.

    LIU Chengjun. Composition and tectonic evolution of west Kunlun orogenic belt and its periphery in the Early Paleozoic-Early Mesozoic[D]. Xi'an: Chang'an University, 2015.
    [26] 张占武, 黄岗, 李怀敏, 等. 北阿尔金拉配泉地区齐勒萨依岩体的年代学、地球化学特征及其构造意义[J]. 岩石矿物学杂志, 2012, 31(1): 13-27.

    ZHANG Zhanwu, HUANG Gang, LI Huaimin, et al. LA-ICP-MS zircon U-Pb geochronology and geochemistry of gabbro and diorite from Qilesayi pluton in Lapeiquan area of northern Altun Mountains and their tectonic implications[J]. Acta Petrologica et Mineralogica, 2012, 31(1): 13-27.
    [27] 吴才来, 姚尚志, 曾令森, 等. 北阿尔金巴什考供—斯米尔布拉克花岗杂岩特征及锆石SHRIMPU-Pb定年[J]. 中国科学(D辑地球科学), 2007, 37(1): 10-26.

    WU Cailai, YAO Shangzhi, ZENG Lingsen, et al. North Alkinbash Kaogong-Smirbrak granite characteristics and zircon SHRIMPU-Pb dating[J]. Science China (Earth Sciences), 2007, 37(1): 10-26.
    [28] 杨子江, 马华东, 王宗秀, 等. 阿尔金山北缘冰沟蛇绿混杂岩中辉长岩锆石SHRIMP U-Pb定年及其地质意义[J]. 岩石学报, 2012, 28(7): 2269-2276.

    YANG Zijiang, MA Huadong, WANG Zongxiu, et al. SHRIMP U-Pb zircon dating of gabbro from the Binggou ophiolite mélange in the northern Altyn, and geological implication[J]. Acta Petrologica Sinica, 2012, 28(7): 2269-2276.
    [29] 吴玉. 北阿尔金早古生代混杂带的组成、构造变形特征与演化[D]. 北京: 中国地质科学院, 2016.

    WU Yu. Compositions, structural deformation and geodynamics of the Early Paleozoic Mélange belt in North Altyn Tagh[D]. Beijing: Chinese Academy of Geological Sciences, 2016.
    [30] 孟令通, 陈柏林, 罗迪柯, 等. 北阿尔金喀腊大湾地区4337高地北花岗闪长岩SHRIMP U-Pb定年及其构造意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1757-1771.

    MENG Lingtong, CHEN Bailin, LUO Dike, et al. SHRIMP zircon U-Pb geochronology of northern highland 4337 granodiorite in Kaladawan area of northern Altun mountains and its tectonic implications[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6): 1757-1771.
    [31] 曹自成, 蒋华山, 张俊程, 等. 塔里木盆地西南地区前寒武纪基底结构及其演化[J]. 石油实验地质, 2023, 45(5): 844-856. doi: 10.11781/sysydz202305844

    CAO Zicheng, JIANG Huashan, ZHANG Juncheng, et al. Structure and evolution of Precambrian basement in southwestern Tarim Basin[J]. Petroleum Geology & Experiment, 2023, 45(5): 844-856. doi: 10.11781/sysydz202305844
    [32] 王国灿, 张孟, 张雄华, 等. 天山东段"北天山洋"构造涵义及演化模式再认识[J]. 地质学报, 2022, 96(10): 3494-3513.

    WANG Guocan, ZHANG Meng, ZHANG Xionghua, et al. Re-understanding on the tectonic implication and evolution model of the "North Tianshan Ocean" from the eastern Tianshan area, Xinjiang, NW China[J]. Acta Geologica Sinica, 2022, 96(10): 3494-3513.
    [33] 王宗秀, 李春麟, NIKOLAI P, 等. 西天山造山带构造单元划分及古生代洋陆转换过程[J]. 中国地质, 2017, 44(4): 623-641.

    WANG Zongxiu, LI Chunlin, NIKOLAI P, et al. Tectonic division and Paleozoic ocean-continent transition in western Tianshan Orogen[J]. Geology in China, 2017, 44(4): 623-641.
    [34] LI Haodong, ZHOU Jianbo, WILDE S A. Nature and development of the South Tianshan-Solonker suture zone[J]. Earth-Science Reviews, 2022, 233: 104189.
    [35] TAN Zhou, XIAO Wenjiao, MAO Qigui, et al. Final closure of the Paleo Asian Ocean Basin in the Early Triassic[J]. Communications Earth & Environment, 2022, 3(1): 259.
    [36] 张仲培, 刘士林, 杨子玉, 等. 塔里木盆地麦盖提斜坡构造演化及油气地质意义[J]. 石油与天然气地质, 2011, 32(6): 909-919.

    ZHANG Zhongpei, LIU Shilin, YANG Ziyu, et al. Tectonic evolution and its petroleum geological significances of the Maigaiti Slop, Tarim Basin[J]. Oil & Gas Geology, 2011, 32(6): 909-919.
    [37] 张宇航, 汤良杰. 塔里木盆地麦盖提斜坡东段构造特征与油气聚集关系[J]. 石油实验地质, 2017, 39(2): 222-229. doi: 10.11781/sysydz201702222

    ZHANG Yuhang, TANG Liangjie. Tectonic characteristics and hydrocarbon accumulation in the eastern section of Maigaiti Slop, Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(2): 222-229. doi: 10.11781/sysydz201702222
    [38] 岳勇, 田景春, 赵应权, 等. 塔里木盆地和田古隆起对奥陶系油气成藏的控制作用[J]. 地球科学(中国地质大学学报), 2018, 43(11): 4215-4225.

    YUE Yong, TIAN Jingchun, ZHAO Yingquan, et al. Control of Hetian paleo-uplift on hydrocarbon accumulation of Ordovician, Tarim Basin[J]. Earth Science (Journal of China University of Geosciences), 2018, 43(11): 4215-4225.
    [39] 宁飞, 云金表, 李建交, 等. 塔里木盆地巴楚隆起西南缘构造特征与勘探前景[J]. 石油与天然气地质, 2021, 42(2): 299-308.

    NING Fei, YUN Jinbiao, LI Jianjiao, et al. Structural characteristics and exploration prospects of the southwestern margin of Bachu Uplift, Tarim Basin[J]. Oil & Gas Geology, 2021, 42(2): 299-308.
    [40] 王湘平, 丰勇, 曹自成. 包裹体综合分析方法在油气成藏过程中的应用: 以塔里木盆地巴—麦地区为例[J]. 东北石油大学学报, 2015, 39(2): 26-33.

    WANG Xiangping, FENG Yong, CAO Zicheng. Application of various aspects of fluid inclusions in hydrocarbon formation history, taking Bachu-Maigaiti area of Tarim Basin as an example[J]. Journal of Northeast Petroleum University, 2015, 39(2): 26-33.
    [41] 郭倩, 蒲仁海. 塔里木盆地巴麦—塔中地区晚古生代古构造演化及油气成藏分析[J]. 石油地球物理勘探, 2011, 46(2): 317-325.

    GUO Qian, PU Renhai. Neopaleozoic tectonic evolution and hydrocarbon analysis in Bamai-Tazhong area, Tarim Basin[J]. Oil Geophysical Prospecting, 2011, 46(2): 317-325.
    [42] 曹自成, 徐勤琪, 余腾孝, 等. 二次生烃与古油藏原油裂解对油气成藏的意义: 以塔里木盆地巴楚—麦盖提地区寒武系烃源岩为例[J]. 新疆石油地质, 2021, 42(2): 143-151.

    CAO Zicheng. XU Qinqi, YU Tengxiao, et al. Significance of secondary hydrocarbon generation and crude oil cracking in paleo-reservoirs to hydrocarbon accumulation: a case study of Cambrian source rocks in Bachu-Maigaiti area of Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(2): 143-151.
    [43] 丛林. 塔里木盆地巴麦地区奥陶系油气藏形成与演化[D]. 北京. 中国石油大学, 2018.

    CONG Lin. Formation and evolution of Ordovician reservoirs in the Bamai region area, Tarim Basin[D]. Beijing: China University of Petroleum, 2018.
    [44] 马红强, 王恕一, 蔺军. 塔里木盆地巴楚—麦盖提地区油气运聚与成藏[J]. 石油实验地质, 2006, 28(3): 243-248. doi: 10.3969/j.issn.1001-6112.2006.03.009

    MA Hongqiang. WANG Shuyi, LIN Jun. Hydrocarbon migration and accumulation characteristics in the Bachu-Maigaiti area of the Tarim Basin[J]. Petroleum Geology & Experiment, 2006, 28(3): 243-248. doi: 10.3969/j.issn.1001-6112.2006.03.009
    [45] 路清华, 邵志兵, 贾存善, 等. 塔里木盆地玉北地区奥陶系原油成因特征分析[J]. 石油实验地质, 2013, 35(3): 320-324. doi: 10.11781/sysydz201303320

    LU Qinghua, SHAO Zhibing, JIA Cunshan, et al. Genesis features of crude oil in Ordovician, Yubei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 320-324. doi: 10.11781/sysydz201303320
    [46] 马安来, 金之钧, 朱翠山, 等. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据[J]. 石油与天然气地质, 2018, 39(4): 730-737.

    MA Anlai, JIN Zhijun, ZHU Cuishan, et al. Effect of TSR on the crude oil in Ordovician reservoirs of well Luosi-2 from Maigaiti Slope, Tarim Basin: evidences from molecular markers[J]. Oil & Gas Geology, 2018, 39(4): 730-737.
    [47] ZHU Guangyou, ZHANG Ying, ZHOU Xiaoxiao, et al. TSR, deep oil cracking and exploration potential in the Hetianhe gas field, Tarim Basin, China[J]. Fuel, 2019, 236: 1078-1092.
    [48] 刘士林, 张仲培, 云金表, 等. 塔里木盆地塘古巴斯坳陷北东向断裂带特征、成因及石油地质意义[J]. 石油与天然气地质, 2018, 39(5): 964-975.

    LIU Shilin, ZHANG Zhongpei, YUN Jinbiao, et al. NE-trending fault belts in Tanggubasi Depression of the Tarim Basin: features, genetic mechanism, and petroleum geological significance[J]. Oil & Gas Geology, 2018, 39(5): 964-975.
    [49] 孙永革, 路清华, 何毓新, 等. 塔里木盆地玉北1井原油成因再认识及其意义[J]. 石油实验地质, 2021, 43(5): 810-817. doi: 10.11781/sysydz202105810

    SUN Yongge, LU Qinghua, HE Yuxin, et al. Recognition of origin of crude oil from well Yubei 1 in Tarim Basin and its significance[J]. Petroleum Geology & Experiment, 2021, 43(5): 810-817. doi: 10.11781/sysydz202105810
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-10
  • 修回日期:  2025-04-29
  • 刊出日期:  2025-05-28

目录

    /

    返回文章
    返回