留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于地质工程一体化思路的页岩有利岩相优选———以松辽盆地梨树断陷为例

林轩 朱建峰 逄海明 李忠博 王伟 刘硕 李海彬 姜振学 李卓 秦春宇 陈康博

林轩, 朱建峰, 逄海明, 李忠博, 王伟, 刘硕, 李海彬, 姜振学, 李卓, 秦春宇, 陈康博. 基于地质工程一体化思路的页岩有利岩相优选———以松辽盆地梨树断陷为例[J]. 石油实验地质, 2025, 47(3): 552-568. doi: 10.11781/sysydz2025030552
引用本文: 林轩, 朱建峰, 逄海明, 李忠博, 王伟, 刘硕, 李海彬, 姜振学, 李卓, 秦春宇, 陈康博. 基于地质工程一体化思路的页岩有利岩相优选———以松辽盆地梨树断陷为例[J]. 石油实验地质, 2025, 47(3): 552-568. doi: 10.11781/sysydz2025030552
LIN Xuan, ZHU Jianfeng, PANG Haiming, LI Zhongbo, WANG Wei, LIU Shuo, LI Haibin, JIANG Zhenxue, LI Zhuo, QIN Chunyu, CHEN Kangbo. Selection of favorable shale lithofacies based on an integrated geology and engineering approach: a case study of Lishu Fault Depression in Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 552-568. doi: 10.11781/sysydz2025030552
Citation: LIN Xuan, ZHU Jianfeng, PANG Haiming, LI Zhongbo, WANG Wei, LIU Shuo, LI Haibin, JIANG Zhenxue, LI Zhuo, QIN Chunyu, CHEN Kangbo. Selection of favorable shale lithofacies based on an integrated geology and engineering approach: a case study of Lishu Fault Depression in Songliao Basin[J]. PETROLEUM GEOLOGY & EXPERIMENT, 2025, 47(3): 552-568. doi: 10.11781/sysydz2025030552

基于地质工程一体化思路的页岩有利岩相优选———以松辽盆地梨树断陷为例

doi: 10.11781/sysydz2025030552
基金项目: 

国家自然科学基金项目 42472182

中国石化科技部项目 P22084

详细信息
    作者简介:

    林轩(1997—),男,博士生,从事非常规油气地质研究。E-mail: xuanlin_012@163.com

    通讯作者:

    李卓(1983-), 男, 博士生导师, 副研究员, 从事非常规储层评价与油气成藏机理研究。E-mail: zhuo.li@cup.edu.cn

  • 中图分类号: TE132.2

Selection of favorable shale lithofacies based on an integrated geology and engineering approach: a case study of Lishu Fault Depression in Songliao Basin

  • 摘要: 松辽盆地梨树断陷具有良好的页岩气勘探开发前景。选取梨树断陷营城组页岩为研究对象,通过开展总有机碳含量测定、岩石热解、X射线衍射、场发射扫描电镜及小物模水力压裂物理模拟等多项实验,基于地质工程一体化思路,优选出研究区的有利岩相。研究区黏土矿物及碳酸盐矿物含量高,碳酸盐岩溶蚀孔及裂缝系统发育,渗流机理涵盖解吸—吸附、扩散、滑脱流和达西流4种渗流机理。小物模水力压裂实验结果显示,黏土岩含量显著影响压裂效果,富黏土岩相破裂压力峰值低,压裂压力泄压快,无法形成横切缝,以纵向缝和层理缝为主,压裂效果差。分析了研究区页岩储层的多尺度孔隙结构和渗流能力,认为该区储层发育中孔,增强了孔隙连通性和孔体积,是比表面积的主要贡献者,也是渗流的主要通道,因此滑脱渗流是研究区最主要的渗流方式。高黏土含量会显著影响压裂效果,黏土含量较低、溶蚀孔发育的混合岩压后显示出优良的人工裂缝改造效果,表现出优秀的渗流能力;富有机质纹层状钙质混合岩和富有机质纹层状硅质混合岩是研究区的有利岩相。X-A井实施地质工程一体化建产后,整体增产效果显著,为提高研究区页岩气的勘探和开发提供了重要的理论支持和实际指导。

     

  • 图  1  松辽盆地梨树断陷区域构造(a-b)及地层岩性组合(c)

    Figure  1.  Structure (a-b) and stratigraphic lithological assemblage (c) in Lishu Fault Depression, Songliao Basin

    图  2  松辽盆地梨树断陷营城组一段有机质丰度

    Figure  2.  Organic matter abundance in K1yc of Lishu Fault Depression, Songliao Basin

    图  3  松辽盆地梨树断陷营城组一段岩相划分三角图

    Figure  3.  Lithofacies classification ternary diagram of K1yc in Lishu Fault Depression, Songliao Basin

    图  4  松辽盆地梨树断陷营城组一段页岩层理构造

    a.纹层状页岩,3 249.11 m,TOC含量3.12%;b.纹层状页岩,3 259.57 m,TOC含量3.37%;c.层状页岩,3 271.79 m,TOC含量0.71%;d.块状页岩,3 321.79 m,TOC含量0.12%。

    Figure  4.  Shale bedding structures of K1yc in Lishu Fault Depression, Songliao Basin

    图  5  松辽盆地梨树断陷营城组一段页岩场发射扫描电镜照片

    a.富有机质纹层状硅质黏土岩,3 257.11 m,TOC含量2.1%;b.富有机质层状硅质黏土岩,3 239.93 m,TOC含量2.79%;c.富有机质纹层状钙质混合岩,3 247.91 m,TOC含量3.39%;d.富有机质纹层状钙质混合岩,3 263.68 m,TOC含量3.5%;e.富有机质纹层状硅质混合岩,3 292.69 m,TOC含量2.3%;f.含有机质层状硅质黏土岩,3 213.41 m,TOC含量0.5%。

    Figure  5.  Field emission scanning electron microscope images of shale in K1yc of Lishu Fault Depression, Songliao Basin

    图  6  松辽盆地梨树断陷营城组一段页岩裂缝发育岩心照片

    a.显微纹层构造,3 149 m,TOC含量2.01%;b.发育大量微裂缝,3 137 m,TOC含量2.51%;c.顺层裂缝发育,3 169 m,TOC含量2.79%;d.发育大量微裂缝,3 149 m,TOC含量3.44%。

    Figure  6.  Core photos with developed fractures in K1yc of Lishu Fault Depression, Songliao Basin

    图  7  松辽盆地梨树断陷营城组一段TOC含量与裂缝的相关性

    Figure  7.  Correlation between total organic carbon content and fractures in K1yc of Lishu Fault Depression, Songliao Basin

    图  8  松辽盆地梨树断陷营城组一段页岩氮气吸附曲线

    Figure  8.  Nitrogen adsorption curves of shale in K1yc of Lishu Fault Depression, Songliao Basin

    图  9  松辽盆地梨树断陷营城组一段页岩高压压汞曲线

    Figure  9.  High-pressure mercury intrusion curves of shale in K1yc of Lishu Fault Depression, Songliao Basin

    图  10  松辽盆地梨树断陷营城组一段孔隙结构综合表征

    Figure  10.  Comprehensive characterization of pore structure in K1yc of Lishu Fault Depression, Songliao Basin

    图  11  松辽盆地梨树断陷营城组一段表观渗透率与实测渗透率拟合图

    Figure  11.  Fitting plots of apparent permeability and measured permeability of K1yc in Lishu Fault Depression, Songliao Basin

    图  12  松辽盆地梨树断陷营城组一段多尺度统一渗流模型柱状图

    Figure  12.  Unified multi-scale seepage model histogram of K1yc in Lishu Fault Depression, Songliao Basin

    图  13  松辽盆地梨树断陷营城组一段页岩压裂实验CT图

    a.富有机质纹层状钙质混合岩;b.富有机质纹层状硅质混合岩;c.富有机质纹层状硅质黏土岩;d.富有机质层状硅质黏土岩;e.含有机质层状硅质黏土岩。

    Figure  13.  CT images of fracturing experiments on shale in K1yc of Lishu Fault Depression, Songliao Basin

    图  14  松辽盆地梨树断陷营城组一段页岩压裂压力—时间关系

    a.富有机质纹层状钙质混合岩;b.富有机质纹层状硅质混合岩;c.富有机质纹层状硅质黏土岩;d.富有机质层状硅质黏土岩;e.含有机质层状硅质黏土岩。

    Figure  14.  Fracturing pressure vs. time of shale in K1yc of Lishu Fault Depression, Songliao Basin

    图  15  松辽盆地梨树断陷营城组一段不同岩相页岩日产量模拟曲线

    Figure  15.  Fitting curves of daily production of shale gas in K1yc of Lishu Fault Depression, Songliao Basin

    图  16  松辽盆地梨树断陷X-A井有利岩相分布

    Figure  16.  Distribution of favorable lithofacies in well X-A, K1yc of Lishu Fault Depression, Songliao Basin

    表  1  松辽盆地梨树断陷营城组一段页岩小物模水力压裂物理模拟实验参数

    Table  1.   Experimental parameters for small-scale hydraulic fracturing simulations on shale of the first member of Yingcheng Formation (K1yc) in Lishu Fault Depression, Songliao Basin

    岩相 σ/MPa σH/MPa σh/MPa σH-σh/MPa 注入速率/(mL/min) 天然裂缝特征
    富有机质纹层状钙质混合岩 82.81 63.6 60.02 2.86 20 层理缝、高角度缝
    富有机质纹层状硅质混合岩 83.99 63.99 61.33 2.66 20 层理缝
    富有机质纹层状硅质黏土岩 84.19 66.57 63.37 3.20 20 层理缝、低角度缝
    富有机质层状硅质黏土岩 83.64 66.86 63.49 3.37 20 层理缝、低角度缝
    含有机质层状硅质黏土岩 83.20 67.93 64.56 3.58 20 层理缝、高角度缝
    下载: 导出CSV

    表  2  松辽盆地梨树断陷营城组一段全岩矿物组分

    Table  2.   Whole-rock mineral composition of K1yc in Lishu Fault Depression, Songliao Basin  %

    样品编号 黏土矿物 石英 长石 方解石 白云石 菱铁矿 黄铁矿
    1 51.8 22.4 10.1 4.5 8.1 0.3 2.8
    2 51.4 31.8 9.5 3.2 2.1 1.6 0.4
    3 52.1 27.7 8.6 4.9 3.3 1.8 1.6
    4 58.8 24.6 4.9 5.7 1.1 3.3 1.6
    5 64.7 20.5 7.1 3.1 0.6 1.9 2.1
    6 37.1 14.7 14.3 19.5 10.6 3.4 0.4
    7 30.5 19.7 13.1 33.6 0.4 1.7 1.0
    8 43.9 14.9 4.1 21.2 13.8 1.6 0.5
    9 45.5 18.3 6.4 19.8 2.7 4.4 2.9
    10 43.2 24.5 4.2 21.7 0.9 4.0 1.5
    11 30.1 30.5 9.6 17.6 9.3 1.8 1.1
    12 52.3 26.9 4.4 8.8 2.4 1.2 4.0
    13 51.5 17.4 8.4 5.2 2.6 1.1 13.8
    14 50.3 20.6 9.7 9.4 7.5 1.7 0.8
    15 50.5 31.4 8.2 3.5 1.2 4.2 1.0
    下载: 导出CSV

    表  3  松辽盆地梨树断陷营城组一段岩相分类

    Table  3.   Lithofacies classification of K1yc in Lishu Fault Depression, Songliao Basin

    层理构造 结构 ω(TOC)/% 定名
    层状 硅质页岩 >2 富有机质层状硅质黏土岩
    硅质页岩 <2 含有机质层状硅质黏土岩
    纹层状 钙质混合 >2 富有机质纹层状钙质混合岩
    硅质混合 >2 富有机质纹层状硅质混合岩
    硅质页岩 >2 富有机质纹层状硅质黏土岩
    下载: 导出CSV

    表  4  松辽盆地梨树断陷营城组一段页岩孔隙结构特征参数

    Table  4.   Pore structure characterization parameters of shale in K1yc of Lishu Fault Depression, Songliao Basin

    岩相类型 平均孔径/nm 比表面积/(m2/g) 退汞效率/% 排驱压力/MPa
    富有机质纹层状钙质混合岩 10~30 25.677 2 82.97 53.32
    富有机质纹层状硅质混合岩 10~30 25.071 9 70.48 53.33
    富有机质纹层状硅质黏土岩 8~25 23.641 6 66.82 66.06
    富有机质层状硅质黏土岩 5~10 19.584 4 58.20 66.06
    含有机质层状硅质黏土岩 5~10 16.903 7 42.17 66.08
    下载: 导出CSV

    表  5  松辽盆地梨树断陷营城组一段渗流模拟边界参数

    Table  5.   Boundary parameters for seepage simulation of K1yc in Lishu Fault Depression, Songliao Basin

    参数 数值
    模型尺寸/m 20×30
    储层厚度/m 150
    原始地层压力/MPa 40
    井底压力/MPa 0.1
    储层温度/K 390
    甲烷气体黏度/(Pa·s) 1.77×10-5
    未改造区裂缝初始渗透率/10-3μm2 0.002
    初始孔隙度/% 5
    改造区迂曲度 3.7
    兰氏压力/MPa 3.09
    兰氏体积/(m3/t) 9.36
    页岩泊松比 0.175
    页岩弹性模量/GPa 33.9
    一级裂缝开度/m 3×10-3
    二级裂缝开度/m 2×10-3
    三级裂缝开度/m 1×10-3
    水力裂缝长度/m 8
    水力裂缝初始渗透率/10-3μm2 0.18
    水力裂缝压缩系数/(1/Pa) 3.5×10-8
    下载: 导出CSV

    表  6  松辽盆地梨树断陷营城组一段页岩开采日产量

    Table  6.   Daily production of shale gas in K1yc of Lishu Fault Depression, Songliao Basin

    岩相 模拟日产量/m3
    富有机质纹层状钙质混合岩 21 000
    富有机质纹层状硅质混合岩 18 300
    富有机质纹层状硅质黏土岩 17 500
    富有机质层状硅质黏土岩 16 800
    含有机质层状硅质黏土岩 16 000
    下载: 导出CSV
  • [1] 唐颖, 唐玄, 王广源, 等. 页岩气开发水力压裂技术综述[J]. 地质通报, 2011, 30(2/3): 393-399.

    TANG Ying, TANG Xuan, WANG Guangyuan, et al. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 2011, 30(2/3): 393-399.
    [2] 郭旭升, 申宝剑, 李志明, 等. 论我国页岩油气的统一性[J]. 石油实验地质, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889

    GUO Xusheng, SHEN Baojian, LI Zhiming, et al. Discussion on the uniformity of shale oil and gas in China[J]. Petroleum Geology & Experiment, 2024, 46(5): 889-905. doi: 10.11781/sysydz202405889
    [3] 魏海峰. 非均质性页岩水力压裂裂缝扩展形态研究进展[J]. 油气地质与采收率, 2023, 30(4): 156-166.

    WEI Haifeng. Research progress on fracture propagation patterns of hydraulic fracturing in heterogeneous shale[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 156-166.
    [4] KANG Y, LI P, CAO W, et al. Investigation of pore structure alteration and permeability enhancement of shale matrix by supercritical water treatment after hydraulic fracturing[J]. Petroleum, 2024, 10(2): 265-274. doi: 10.1016/j.petlm.2022.05.002
    [5] HE Y, WANG J, HUANG X, et al. Investigation of low water recovery based on gas-water two-phase low-velocity non-Darcy flow model for hydraulically fractured horizontal wells in shale[J]. Petroleum, 2023, 9(3): 364-372. doi: 10.1016/j.petlm.2022.03.005
    [6] 邹才能, 朱如凯, 白斌, 等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报, 2011, 27(6): 1857-1864.

    ZOU Caineng, ZHU Rukai, BAI Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
    [7] 杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3): 450-455.

    YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3): 450-455.
    [8] 邹才能, 杨智, 陶士振, 等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发, 2012, 39(1): 13-26.

    ZOU Caineng, YANG Zhi, TAO Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.
    [9] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001

    ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
    [10] 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7): 15-18. doi: 10.3321/j.issn:1000-0976.2004.07.005

    ZHANG Jinchuan, JIN Zhijun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. doi: 10.3321/j.issn:1000-0976.2004.07.005
    [11] 王红岩, 刘玉章, 董大忠, 等. 中国南方海相页岩气高效开发的科学问题[J]. 石油勘探与开发, 2013, 40(5): 574-579.

    WANG Hongyan, LIU Yuzhang, DONG Dazhong, et al. Scientific issues on effective development of marine shale gas in southern China[J]. Petroleum Exploration and Development, 2013, 40(5): 574-579.
    [12] 郭旭升. 南方海相页岩气"二元富集"规律: 四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218.

    GUO Xusheng. The "binary enrichment" mechanism of marine shale gas in Southern China: insights from the exploration practice of the Longmaxi Formation shale gas in the Sichuan Basin and its periphery[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218.
    [13] 宫厚健, 姜振学, 朱峰, 等. 苏北盆地高邮凹陷阜宁组二段页岩油赋存状态定量表征及控制因素[J]. 东北石油大学学报, 2024, 48(2): 59-71. doi: 10.3969/j.issn.2095-4107.2024.02.005

    GONG Houjian, JIANG Zhenxue, ZHU Feng, et al. Quantitative characterization and control factors of shale oil occurrence state in the shale of member 2 of Fu-ning Formation in the Gaoyou Sag, Subei Basin[J]. Journal of Northeast Petroleum University, 2024, 48(2): 59-71. doi: 10.3969/j.issn.2095-4107.2024.02.005
    [14] 游利军, 范道全, 康毅力, 等. 页岩有机质体积含量: 概念、测试方法及意义[J]. 西南石油大学学报(自然科学版), 2024, 46(2): 1-14.

    YOU Lijun, FAN Daoquan, KANG Yili, et al. Organic volume proportion in shale: concept, measurement method and significance[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2024, 46(2): 1-14.
    [15] KUUSKRAA V A. Unconventional natural gas, industry savior or bridge?[C]//EIA Energy Outlook and Modeling Conference. Washington: EIA, 2006.
    [16] 何陈诚, 赵永强, 俞凌杰, 等. 川东北地区二叠系大隆组深层页岩气储层孔隙结构及其分形特征[J]. 石油实验地质, 2024, 46(2): 263-277. doi: 10.11781/sysydz202402263

    HE Chencheng, ZHAO Yongqiang, YU Lingjie, et al. Pore structure and fractal characteristics of deep shale gas reservoirs in the Permian Dalong Formation, northeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2024, 46(2): 263-277. doi: 10.11781/sysydz202402263
    [17] 李荷婷, 曾杰, 李真祥, 等. 考虑页岩基质不同孔隙特征的表观渗透率模型[J]. 西南石油大学学报(自然科学版), 2023, 45(3): 109-118.

    LI Heting, ZENG Jie, LI Zhenxiang, et al. Apparent permeability model considering different pore characteristics of shale matrix[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2023, 45(3): 109-118.
    [18] BUSTIN A M M, BUSTIN R M, CUI Xiaojun. Importance of fabric on the production of gas shales[C]//Proceedings of the SPE Unconventional Reservoirs Conference. Keystone, Colorado: Society of Petroleum Engineers, 2008.
    [19] 王鸣川, 王燃, 岳慧, 等. 页岩油微观渗流机理研究进展[J]. 石油实验地质, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098

    WANG Mingchuan, WANG Ran, YUE Hui, et al. Research progress of microscopic percolation mechanism of shale oil[J]. Petroleum Geology & Experiment, 2024, 46(1): 98-110. doi: 10.11781/sysydz202401098
    [20] 康淑娟, 仰云峰, 王华建, 等. 松辽盆地中央坳陷区三肇凹陷上白垩统青山口组一段页岩含油性特征[J]. 石油实验地质, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089

    KANG Shujuan, YANG Yunfeng, WANG Huajian, et al. Oil-bearing capacity of shale in the first member of Upper Cretaceous Qingshankou Formation, Sanzhao Sag, Central Depression, Songliao Basin[J]. Petroleum Geology & Experiment, 2023, 45(1): 89-98. doi: 10.11781/sysydz202301089
    [21] DA SILVA M A V R, MONTE M J S. The construction, testing and use of a new Knudsen effusion apparatus[J]. Thermochimica Acta, 1990, 171: 169-183. doi: 10.1016/0040-6031(90)87017-7
    [22] 张君峰, 许浩, 周志, 等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899.

    ZHANG Junfeng, XU Hao, ZHOU Zhi, et al. Geological characteristics of shale gas reservoir in Yichang area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899.
    [23] 何希鹏, 张培先, 任建华, 等. 渝东南南川地区东胜构造带常压页岩气勘探开发实践[J]. 石油实验地质, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057

    HE Xipeng, ZHANG Peixian, REN Jianhua, et al. Exploration and development practice of normal pressure shale gas in Dongsheng structural belt, Nanchuan area, southeast Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1057-1066. doi: 10.11781/sysydz2023061057
    [24] 陈更生, 吴建发, 刘勇, 等. 川南地区百亿立方米页岩气产能建设地质工程一体化关键技术[J]. 天然气工业, 2021, 41(1): 72-82.

    CHEN Gengsheng, WU Jianfa, LIU Yong, et al. Geology-engineering integration key technologies for ten billion cubic meters of shale gas productivity construction in the southern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 72-82.
    [25] 王运海, 贺庆, 朱智超, 等. 渝东南南川地区常压页岩气示范井应用评价及推广效果[J]. 石油实验地质, 2023, 45(6): 1160-1169. doi: 10.11781/sysydz2023061160

    WANG Yunhai, HE Qing, ZHU Zhichao, et al. Application evaluation and promotion effect of normal pressure shale gas demonstration well in Nanchuan area in southeastern Chongqing[J]. Petroleum Geology & Experiment, 2023, 45(6): 1160-1169. doi: 10.11781/sysydz2023061160
    [26] 王嗣敏, 刘招君, 董清水, 等. 陆相盆地层序地层形成机制分析: 以松辽盆地为例[J]. 长春科技大学学报, 2000, 30(2): 139-144. doi: 10.3969/j.issn.1671-5888.2000.02.008

    WANG Simin, LIU Zhaojun, DONG Qingshui, et al. The mechanism of formation analysis of continental sequence stratigraphy[J]. Journal of Changchun University of Science and Technology, 2000, 30(2): 139-144. doi: 10.3969/j.issn.1671-5888.2000.02.008
    [27] 谢晓安, 周卓明. 松辽盆地深层天然气勘探实践与勘探领域[J]. 石油与天然气地质, 2008, 29(1): 113-119. doi: 10.3321/j.issn:0253-9985.2008.01.018

    XIE Xiao'an, ZHOU Zhuoming. Exploration practices and directions for deep natural gas in the Songliao Basin[J]. Oil & Gas Geology, 2008, 29(1): 113-119. doi: 10.3321/j.issn:0253-9985.2008.01.018
    [28] YANG Xiongbing, WANG Hongyu, LI Zeyu, et al. Tectonic-sedimentary evolution of a continental rift basin: a case study of the Early Cretaceous Changling and Lishu fault depressions, southern Songliao Basin, China[J]. Marine and Petroleum Geology, 2021, 128: 105068. doi: 10.1016/j.marpetgeo.2021.105068
    [29] JIANG Lian, GEORGE S C, ZHANG Min. The occurrence and distribution of rearranged hopanes in crude oils from the Lishu Depression, Songliao Basin, China[J]. Organic Geochemistry, 2018, 115: 205-219. doi: 10.1016/j.orggeochem.2017.11.007
    [30] 张君峰, 徐兴友, 白静, 等. 松辽盆地梨树断陷白垩系沙河子组陆相页岩气形成条件与勘探突破[J]. 石油勘探与开发, 2022, 49(3): 440-452.

    ZHANG Junfeng, XU Xingyou, BAI Jing, et al. Accumulation and exploration of continental shale gas resources of Cretaceous Shahezi Formation in Lishu Fault Depression, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2022, 49(3): 440-452.
    [31] 裴福萍, 许文良, 杨德彬, 等. 松辽盆地南部中生代火山岩: 锆石U-Pb年代学及其对基底性质的制约[J]. 地球科学(中国地质大学学报), 2008, 33(5): 603-617.

    PEI Fuping, XU Wenliang, YANG Debin, et al. Mesozoic volcanic rocks in the southern Songliao Basin: zircon U-Pb ages and their constraints on the nature of basin basement[J]. Earth Science (Journal of China University of Geosciences), 2008, 33(5): 603-617.
    [32] 姜雪, 邹华耀, 饶勇, 等. 松辽盆地南部长岭断陷火山岩岩性岩相特征及其对储层的控制作用[J]. 科技导报, 2009, 27(23): 32-40.

    JIANG Xue, ZOU Huayao, RAO Yong, et al. Lithologic and lithofacies characteristics of volcanic rock and their controlling effects on reservoirs of Changling Fault Depression in the south of Songliao Basin[J]. Science & Technology Review, 2009, 27(23): 32-40.
    [33] 云金表, 殷进垠, 金之钧. 松辽盆地深部地质特征及其盆地动力学演化[J]. 地震地质, 2003, 25(4): 595-608. doi: 10.3969/j.issn.0253-4967.2003.04.008

    YUN Jinbiao, YIN Jinyin, JIN Zhijun. Deep geological feature and dynamic evolution of the Songliao Basin[J]. Seismology and Geology, 2003, 25(4): 595-608. doi: 10.3969/j.issn.0253-4967.2003.04.008
    [34] 李永刚. 松辽盆地梨树断陷期储层流体包裹体特征及油气成藏期次[J]. 能源与环保, 2023, 45(10): 135-144.

    LI Yonggang. Characteristics of reservoir fluid inclusions and oil and gas accumulation stages during the Lishu Fault Depression, Songliao Basin[J]. China Energy and Environmental Protection, 2023, 45(10): 135-144.
    [35] 王宏语, 李瑞磊, 朱建峰, 等. 松辽盆地梨树断陷构造沉积学特征及发育机制[J]. 地学前缘, 2023, 30(4): 112-127.

    WANG Hongyu, LI Ruilei, ZHU Jianfeng, et al. Tectono-sedimentary characteristics and formation mechanism of the Lishu Rift Depression, Songliao Basin[J]. Earth Science Frontiers, 2023, 30(4): 112-127.
    [36] 单敬福, 葛黛薇, 乐江华, 等. 松辽盆地东南缘层序地层与沉积体系配置及演化: 以梨树断陷西北部营城组地层为例[J]. 沉积学报, 2013, 31(1): 67-76.

    SHAN Jingfu, GE Daiwei, LE Jianghua, et al. Framework of sequence stratigraphy, sedimentary system and evolution of southeastern Songliao Basin: an example from Yingcheng Formation in Lishu Fault Depression[J]. Acta Sedimentologica Sinica, 2013, 31(1): 67-76.
    [37] 周卓明, 沈忠民, 张玺, 等. 松辽盆地梨树断陷苏家屯次洼页岩气成藏条件分析[J]. 石油实验地质, 2013, 35(3): 263-268. doi: 10.11781/sysydz201303263

    ZHOU Zhuoming, SHEN Zhongmin, ZHANG Xi, et al. Accumulation conditions of shale gas in Sujiatun Sub-depression, Lishu Fault Depression, Songliao Basin[J]. Petroleum Geology & Experiment, 2013, 35(3): 263-268. doi: 10.11781/sysydz201303263
    [38] 宋振响, 李忠博, 张玺, 等. 松辽盆地梨树断陷苏家屯地区页岩气储层特征及含气性评价[J]. 石油实验地质, 2015, 37(5): 606-613. doi: 10.11781/sysydz201505606

    SONG Zhenxiang, LI Zhongbo, ZHANG Xi, et al. Characteristics of shale gas reservoirs and evaluation of their gas potential in Sujiatun area, Lishu Fault Depression, Songliao Basin[J]. Petroleum Geology & Experiment, 2015, 37(5): 606-613. doi: 10.11781/sysydz201505606
    [39] 卢双舫, 黄文彪, 陈方文, 等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2): 249-256.

    LU Shuangfang, HUANG Wenbiao, CHEN Fangwen, et al. Classification and evaluation criteria of shale oil and gas resources: discussion and application[J]. Petroleum Exploration and Development, 2012, 39(2): 249-256.
    [40] 纪文明, 宋岩, 姜振学, 等. 四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J]. 石油学报, 2016, 37(2): 182-195.

    JI Wenming, SONG Yan, JIANG Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195.
    [41] 王世谦, 王书彦, 满玲, 等. 页岩气选区评价方法与关键参数[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 609-620.

    WANG Shiqian, WANG Shuyan, MAN Ling, et al. Appraisal method and key parameters for screening shale gas play[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(6): 609-620.
    [42] 焦淑静, 张慧, 薛东川, 等. 泥页岩孔隙类型、形态特征及成因研究[J]. 电子显微学报, 2015, 34(5): 421-427.

    JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Study on morphological characteristics of micropores and microcracks in shale[J]. Journal of Chinese Electron Microscopy Society, 2015, 34(5): 421-427.
    [43] 李新景, 胡素云, 程克明. 北美裂缝性页岩气勘探开发的启示[J]. 石油勘探与开发, 2007, 34(4): 392-400.

    LI Xinjing, HU Suyun, CHENG Keming. Suggestions from the development of fractured shale gas in North America[J]. Petroleum Exploration and Development, 2007, 34(4): 392-400.
    [44] 杨峰, 宁正福, 胡昌蓬, 等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2): 301-311.

    YANG Feng, NING Zhengfu, HU Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311.
    [45] 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014, 34(6): 9-16.

    GUO Xusheng, LI Yuping, LIU Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16.
    [46] 曹涛涛, 宋之光, 罗厚勇, 等. 煤、油页岩和页岩微观孔隙差异及其储集机理[J]. 天然气地球科学, 2015, 26(11): 2208-2218.

    CAO Taotao, SONG Zhiguang, LUO Houyong, et al. The Differences of microscopic pore structure characteristics of coal, oil shale and shales and their storage mechanisms[J]. Natural Gas Geoscience, 2015, 26(11): 2208-2218.
    [47] 王亮, 陈云燕, 刘玉霞. 川东南彭水地区龙马溪组页岩孔隙结构特征[J]. 中国石油勘探, 2014, 19(5): 80-88.

    WANG Liang, CHEN Yunyan, LIU Yuxia. Shale porous structural characteristics of Longmaxi Formation in Pengshui area of southeast Sichuan Basin[J]. China Petroleum Exploration, 2014, 19(5): 80-88.
    [48] JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10): 55-61.
    [49] 朱琴, 张烈辉, 张博宁, 等. 考虑微裂缝的页岩气藏三重介质不稳定产量递减研究[J]. 科学技术与工程, 2013, 13(29): 8595-8599.

    ZHU Qin, ZHANG Liehui, ZHANG Boning, et al. The research about transient production decline of triple porosity model considering micro fractures in shale gas reservoir[J]. Science Technology and Engineering, 2013, 13(29): 8595-8599.
    [50] ROSS D J K, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
    [51] CARLSON E S, MERCER J C. Devonian shale gas production: mechanisms and simple models[J]. Journal of Petroleum Technology, 1991, 43(4): 476-482.
    [52] 朱维耀, 亓倩. 页岩气多尺度复杂流动机理与模型研究[J]. 中国科学: 技术科学, 2016, 46(2): 111-119.

    ZHU Weiyao, QI Qian. Study on the multi-scale nonlinear flow mechanism and model of shale gas[J]. Scientia Sinica Technologica, 2016, 46(2): 111-119.
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2025-04-11
  • 刊出日期:  2025-05-28

目录

    /

    返回文章
    返回